Name:

Pid: \qquad

1. (a) Find a closed formula (no summation signs) for the expression $S(n, n-1)$.
\square
(b) Find a closed formula (no summation signs) for the expression $S(n, 3)$.
\square
2. Find a closed formula (no summation signs) for the expression $\sum_{k=0}^{n}(-1)^{k}\binom{2 n}{2 k}$.
3. We colored all points of \mathbb{R}^{2} with integer coordinates by one of six colors. Prove that there is a rectangle whose vertices are monochromatic. Can we make the statement stronger by limiting the size of the purported monochromatic rectangle?
4. Prove the following inequality for all integers n and real $x \geq-1,(1+x)^{n} \geq 1+n x$.
