Name:

Pid: \qquad

1. (10 points) We say that a Boolean function $f\left(x_{1}, \ldots, x_{n}\right)\left(f:\{0,1\}^{n} \rightarrow\{0,1\}\right)$ depends on x_{i} iff there are $v_{1}, \ldots, v_{i-1}, v_{i+1}, \ldots, v_{n}$ such that

$$
f\left(v_{1}, \ldots, v_{i-1}, 0, v_{i+1}, \ldots, v_{n}\right) \neq f\left(v_{1}, \ldots, v_{i-1}, 1, v_{i+1}, \ldots, v_{n}\right)
$$

Find a closed formula (with one summation sign from 0 to n) for number of functions that depends on all their inputs.
2. (10 points) How many numbers from 1 to 1000 are neither square numbers nor cubic numbers?
3. (10 points) Let r_{1} and r_{2} are solutions of the equation $\lambda^{2}-b_{1} \lambda-b_{2}=0$ and $r_{1} \neq r_{2}$ i.e. $b_{1}=r_{1}+r_{2}$ and $b_{2}=-r_{1} r_{2}$. Find a closed formula (no summation signs) for the recurrent sequence a_{n} such that $a_{n+2}=b_{1} a_{n+1}+b_{2} a_{n}$ for $n \geq 0, a_{1}=r_{1}+r_{2}$, and $a_{0}=2$.

