\qquad

Pid: \qquad

1. (10 points) Show that $1^{2}+2^{2}+3^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6}$ for all integers $n \geq 1$.

Solution: We prove the statement using induction by n. The base case for $n=1$ is true since $1^{2}=1$ and $\frac{1(1+1)(2+1)}{6}=1$.
Now we need to prove the induction step from n to $n+1$. Assume that $1^{2}+2^{2}+3^{2}+\cdots+n^{2}=$ $\frac{n(n+1)(2 n+1)}{6}$. By the hypothesis, $1^{2}+2^{2}+3^{2}+\cdots+n^{2}+(n+1)^{2}=\frac{n(n+1)(2 n+1)}{6}+(n+1)^{2}$. Note that

$$
\begin{aligned}
& \frac{n(n+1)(2 n+1)}{6}+(n+1)^{2}=\frac{n(n+1)(2 n+1)+6 n^{2}+12 n+6}{6}= \\
& \qquad \frac{n^{3}+2 n^{2}+n^{2}+n+6 n^{2}+12 n+6}{6}=\frac{n^{3}+9 n^{2}+13 n+6}{6}= \\
& \frac{(n+1)(n+2)(2 n+3)}{6}
\end{aligned}
$$

Hence, the induction step is true and by the induction principle, $1^{2}+2^{2}+3^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6}$ for all positive integers n.
2. (10 points) Let $a_{0}=2, a_{1}=5$, and $a_{n}=5 a_{n-1}-6 a_{n-2}$ for all integers $n \geq 2$. Show that $a_{n}=3^{n}+2^{n}$ for all integers $n \geq 0$.

Solution: We prove the statement using induction by n for $n \geq 0$. The base cases for $n=0$ and $n=1$ are true since $3^{0}+2^{0}=1+1=2=a_{0}$ and $3^{1}+2^{1}=3+2=5=a_{1}$.
Let us now prove the induction step from n and $n-1$ to $n+1$. Assume that $a_{n-1}=3^{n-1}+2^{n-1}$ and $a_{n}=3^{n}+2^{n}$. Note that $a_{n+1}=5 a_{n}-6 a_{n-1}$; hence, by the induction hypothesis, $a_{n+1}=$ $5\left(3^{n}+2^{n}\right)-6\left(3^{n-1}+2^{n-1}\right)=(5 \cdot 3-6) 3^{n-1}+(5 \cdot 2-6) 2^{n-1}=9 \cdot 3^{n-1}+4 \cdot 2^{n-1}=3^{n+1}+2^{n+1}$.
As a result, the induction step is true and by the induction principle, $a_{n}=3^{n}+2^{n}$ for all integers $n \geq 0$. (Note that we proved a stronger statement than it was asked in the problem.)
3. (10 points) Let n be a positive integer and A_{1}, \ldots, A_{n} be some sets. Let us define union of these sets as follows:

1. $\cap_{i=1}^{1} A_{i}=A_{1}$,
2. $\cap_{i=1}^{k+1} A_{i}=\left(\cap_{i=1}^{k} A_{i}\right) \cap A_{k+1}$.

Show that $\cap_{i=1}^{n}\{x \in \mathbb{N}: i \leq x \leq n\}=\{n\}$.

Solution: We prove using induction by m that $\cap_{i=1}^{m}\{x \in \mathbb{N}: i \leq x \leq n\}=\{m, m+1, \ldots, n\}$.
The base case is for $m=1$ is true since

$$
\cap_{i=1}^{1}\{x \in \mathbb{N}: i \leq x \leq n\}=[n]=\{1,2, \ldots, n\} .
$$

Let us now prove the induction step from m to $m+1$. Assume that $\cap_{i=1}^{m}\{x \in \mathbb{N}: i \leq x \leq n\}=$ $\{m, m+1, \ldots, n\}$. Note that

$$
\cap_{i=1}^{m+1}\{x \in \mathbb{N}: i \leq x \leq n\}=\left(\cap_{i=1}^{m}\{x \in \mathbb{N}: i \leq x \leq n\}\right) \cap\{x \in \mathbb{N}: m+1 \leq x \leq n\}
$$

Therefore

$$
\cap_{i=1}^{m+1}\{x \in \mathbb{N}: i \leq x \leq n\}=\{m, m+1, \ldots, n\} \cap\{m+1, \ldots, n\}=\{m+1, \ldots, n\}
$$

Hence, by the induction principle, the statement is true for all m. As a result, we proved for $m=n$ that $\cap_{i=1}^{n}\{x \in \mathbb{N}: i \leq x \leq n\}=\{n\}$.
4. (10 points) Let U be the set of sequences of the following symbols: "+", ".", " x_{1} ", ..., " x_{n} ". Let $B=\left\{x_{i}: i \in[n]\right\}$; i.e., B is the set of sequences consisting of only one symbol x_{i}. Let $\mathcal{F}=\left\{f_{+}, f\right.$. $\}$, where $f_{+}\left(F_{1}, F_{2}\right)=\left(F_{1}+F_{2}\right)$ and $f .\left(F_{1}, F_{2}\right)=\left(F_{1} \cdot F_{2}\right)$ (by $\left(F_{1} \# F_{2}\right)$ we denote the sequence obtained by concatenating "(", F_{1}, "\#", F_{2}, and ")"). Let S be the set generated by \mathcal{F} from B.
For $s:[n] \rightarrow\{0,1\}$ and $F \in S$, we define the function $\operatorname{val}(F, s)$ using structural recursion as follows.

1. $\operatorname{val}\left(x_{i}, s\right)=s(i)$,
2. $\operatorname{val}\left(\left(F_{1}+F_{2}\right), s\right)=\operatorname{val}\left(F_{1}, s\right)+\operatorname{val}\left(F_{2}, s\right)$,
3. $\operatorname{val}\left(\left(F_{1} \cdot F_{2}\right), s\right)=\operatorname{val}\left(F_{1}, s\right) \cdot \operatorname{val}\left(F_{2}, s\right)$.

Let $F_{1}, \ldots, F_{n} \in S$. Let us define the sum of these formulas as follows:

1. $\sum_{i=j}^{j} F_{i}=F_{j}$,
2. $\sum_{i=j}^{j+k} F_{i}=f_{+}\left(\sum_{i=j}^{j+k-1} F_{i}, F_{j+k}\right)$ for $k \geq 1$.

Show that $\operatorname{val}\left(\sum_{i=1}^{n} x_{i}, s\right)=\operatorname{val}\left(\sum_{i=1}^{n} x_{n-i+1}, s\right)$ for any s.

Solution: Before we start working with the arithmetic formulas, let us prove several statements for real number. Let a_{1}, \ldots, a_{n} be some real numbers. We show that $\sum_{i=m}^{m+n} a_{i}=a_{m}+\sum_{i=m+1}^{m+n} a_{i}$ for $n \geq 1$ using induction by n. The base case is true for $n=1$ since $\sum_{i=m}^{m+1} a_{i}=a_{m}+a_{m+1}=$ $a_{m}+\sum_{i=m+1}^{m+1} a_{i}$.
Let us now prove the induction step from n to $n+1$. Assume that $\sum_{i=m}^{m+n} a_{i}=a_{m}+\sum_{i=m+1}^{m+n} a_{i}$. Note that by the induction hypothesis,

$$
\sum_{i=m}^{m+n+1} a_{i}=\sum_{i=m}^{m+n} a_{i}+a_{m+n+1}=a_{m}+\sum_{i=m+1}^{m+n} a_{i}+a_{m+n+1}=a_{m}+\sum_{i=m+1}^{m+n+1}
$$

Using this statement we may show that $\sum_{i=1}^{m} a_{i}=\sum_{i=n-m+1}^{n} a_{n-i+1}$ for $m \geq 1$ using induction by m. The base case is true since $\sum_{i=1}^{1} a_{i}=a_{1}=\sum_{i=n}^{n} a_{n-i+1}$. To prove the induction step from m to $m+1$; assume $\sum_{i=1}^{m} a_{i}=\sum_{i=n-m+1}^{n} a_{n-i+1}$. Note that the hypothesis implies that

$$
\sum_{i=1}^{m+1} a_{i}=\sum_{i=1}^{m} a_{i}+a_{m+1}=\sum_{i=n-m+1}^{n} a_{n-i+1}+a_{m+1}=\sum_{i=n-m}^{n} a_{n-i+1}
$$

Therefore by the induction hypothesis, $\sum_{i=1}^{m} a_{i}=\sum_{i=n-m+1}^{n} a_{n-i+1}$ for $m \geq 1$. If we consider $m=n$, we get $\sum_{i=1}^{n} a_{i}=\sum_{i=1}^{n} a_{n-i+1}$.
Let us now explain how to get this statement for arithmetic formulas. Let F_{1}, \ldots, F_{m} be some arithmetic formulas. Then we may show that $\operatorname{val}\left(\sum_{i=1}^{m} F_{i}, s\right)=\sum_{i=1}^{m} \operatorname{val}\left(F_{i}, s\right)$ for all s. Fix some s; we prove this statement also using induction. The base case for $m=1$ is true since $\sum_{i=1}^{1} F_{i}=F_{1}$ and $\sum_{i=1}^{1} \operatorname{val}\left(F_{i}, s\right)=\operatorname{val}\left(F_{1}, s\right)$. To prove the induction step from m to $m+1$; assume $\operatorname{val}\left(\sum_{i=1}^{m} F_{i}, s\right)=\sum_{i=1}^{m} \operatorname{val}\left(F_{i}, s\right)$. Note that $\sum_{i=1}^{m+1} F_{i}=f_{+}\left(\sum_{i=1}^{m} F_{i}, F_{m+1}\right)$, and $\operatorname{val}\left(f_{+}\left(\sum_{i=1}^{m} F_{i}, F_{m+1}\right), s\right)=\operatorname{val}\left(\sum_{i=1}^{m} F_{i}, s\right)+\operatorname{val}\left(F_{m+1}, s\right)$. Hence,

$$
\operatorname{val}\left(\sum_{i=1}^{m+1} F_{i}, s\right)=\operatorname{val}\left(\sum_{i=1}^{m} F_{i}, s\right)+\operatorname{val}\left(F_{m+1}, s\right)=\sum_{i=1}^{m} \operatorname{val}\left(F_{i}, s\right)+\operatorname{val}\left(F_{m+1}, s\right)=\sum_{i=1}^{m+1} \operatorname{val}\left(F_{i}, s\right)
$$

Using all these statement, we may notice that

$$
\operatorname{val}\left(\sum_{i=1}^{n} x_{i}, s\right)=\sum_{i=1}^{n} \operatorname{val}\left(x_{i}, s\right)=\sum_{i=1}^{n} \operatorname{val}\left(x_{n-i+1}, s\right)=\operatorname{val}\left(\sum_{i=1}^{n} x_{n-i+1}, s\right)
$$

