
Math 160A Solutions to Practice Midterm 1 October 16, 2019

Name:

Pid:

1. (10 points) Show that 12 + 22 + 32 + · · ·+ n2 = n(n+1)(2n+1)
6 for all integers n ≥ 1.

Solution: We prove the statement using induction by n. The base case for n = 1 is true since

12 = 1 and 1(1+1)(2+1)
6 = 1.

Now we need to prove the induction step from n to n + 1. Assume that 12 + 22 + 32 + · · · + n2 =
n(n+1)(2n+1)

6 . By the hypothesis, 12 + 22 + 32 + · · ·+ n2 + (n + 1)2 = n(n+1)(2n+1)
6 + (n + 1)2. Note

that

n(n + 1)(2n + 1)

6
+ (n + 1)2 =

n(n + 1)(2n + 1) + 6n2 + 12n + 6

6
=

n3 + 2n2 + n2 + n + 6n2 + 12n + 6

6
=

n3 + 9n2 + 13n + 6

6
=

(n + 1)(n + 2)(2n + 3)

6
.

Hence, the induction step is true and by the induction principle, 12+22+32+· · ·+n2 = n(n+1)(2n+1)
6

for all positive integers n.
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2. (10 points) Let a0 = 2, a1 = 5, and an = 5an−1 − 6an−2 for all integers n ≥ 2. Show that an = 3n + 2n

for all integers n ≥ 0.

Solution: We prove the statement using induction by n for n ≥ 0. The base cases for n = 0 and
n = 1 are true since 30 + 20 = 1 + 1 = 2 = a0 and 31 + 21 = 3 + 2 = 5 = a1.

Let us now prove the induction step from n and n− 1 to n + 1. Assume that an−1 = 3n−1 + 2n−1

and an = 3n + 2n. Note that an+1 = 5an − 6an−1; hence, by the induction hypothesis, an+1 =
5(3n + 2n)− 6(3n−1 + 2n−1) = (5 · 3− 6)3n−1 + (5 · 2− 6)2n−1 = 9 · 3n−1 + 4 · 2n−1 = 3n+1 + 2n+1.

As a result, the induction step is true and by the induction principle, an = 3n + 2n for all integers
n ≥ 0. (Note that we proved a stronger statement than it was asked in the problem.)



Math 160A Solutions to Practice Midterm 1, Page 3 of 4 October 16, 2019

3. (10 points) Let n be a positive integer and A1, . . . , An be some sets. Let us define union of these sets
as follows:

1. ∩1i=1Ai = A1,

2. ∩k+1
i=1Ai = (∩ki=1Ai) ∩Ak+1.

Show that ∩ni=1{x ∈ N : i ≤ x ≤ n} = {n}.

Solution: We prove using induction by m that ∩mi=1{x ∈ N : i ≤ x ≤ n} = {m,m + 1, . . . , n}.
The base case is for m = 1 is true since

∩1i=1{x ∈ N : i ≤ x ≤ n} = [n] = {1, 2, . . . , n}.

Let us now prove the induction step from m to m + 1. Assume that ∩mi=1{x ∈ N : i ≤ x ≤ n} =
{m,m + 1, . . . , n}. Note that

∩m+1
i=1 {x ∈ N : i ≤ x ≤ n} =

(
∩mi=1 {x ∈ N : i ≤ x ≤ n}

)
∩ {x ∈ N : m + 1 ≤ x ≤ n}.

Therefore

∩m+1
i=1 {x ∈ N : i ≤ x ≤ n} = {m,m + 1, . . . , n} ∩ {m + 1, . . . , n} = {m + 1, . . . , n}.

Hence, by the induction principle, the statement is true for all m. As a result, we proved for m = n
that ∩ni=1{x ∈ N : i ≤ x ≤ n} = {n}.
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4. (10 points) Let U be the set of sequences of the following symbols: “+”, “·”, “x1”, . . . , “xn”. Let
B = {xi : i ∈ [n]}; i.e., B is the set of sequences consisting of only one symbol xi. Let F = {f+, f·},
where f+(F1, F2) = (F1 + F2) and f·(F1, F2) = (F1 · F2) (by (F1#F2) we denote the sequence obtained
by concatenating “(”, F1, “#”, F2, and “)”). Let S be the set generated by F from B.

For s : [n]→ {0, 1} and F ∈ S, we define the function val(F, s) using structural recursion as follows.

1. val(xi, s) = s(i),

2. val((F1 + F2), s) = val(F1, s) + val(F2, s),

3. val((F1 · F2), s) = val(F1, s) · val(F2, s).

Let F1, . . . , Fn ∈ S. Let us define the sum of these formulas as follows:

1.
∑j

i=j Fi = Fj ,

2.
∑j+k

i=j Fi = f+(
∑j+k−1

i=j Fi, Fj+k) for k ≥ 1.

Show that val(
∑n

i=1 xi, s) = val(
∑n

i=1 xn−i+1, s) for any s.

Solution: Before we start working with the arithmetic formulas, let us prove several statements for
real number. Let a1, . . . , an be some real numbers. We show that

∑m+n
i=m ai = am +

∑m+n
i=m+1 ai

for n ≥ 1 using induction by n. The base case is true for n = 1 since
∑m+1

i=m ai = am + am+1 =

am +
∑m+1

i=m+1 ai.

Let us now prove the induction step from n to n + 1. Assume that
∑m+n

i=m ai = am +
∑m+n

i=m+1 ai.
Note that by the induction hypothesis,

m+n+1∑
i=m

ai =

m+n∑
i=m

ai + am+n+1 = am +

m+n∑
i=m+1

ai + am+n+1 = am +

m+n+1∑
i=m+1

.

Using this statement we may show that
∑m

i=1 ai =
∑n

i=n−m+1 an−i+1 for m ≥ 1 using induction by

m. The base case is true since
∑1

i=1 ai = a1 =
∑n

i=n an−i+1. To prove the induction step from m
to m + 1; assume

∑m
i=1 ai =

∑n
i=n−m+1 an−i+1. Note that the hypothesis implies that

m+1∑
i=1

ai =

m∑
i=1

ai + am+1 =

n∑
i=n−m+1

an−i+1 + am+1 =

n∑
i=n−m

an−i+1.

Therefore by the induction hypothesis,
∑m

i=1 ai =
∑n

i=n−m+1 an−i+1 for m ≥ 1. If we consider
m = n, we get

∑n
i=1 ai =

∑n
i=1 an−i+1.

Let us now explain how to get this statement for arithmetic formulas. Let F1, . . . , Fm be
some arithmetic formulas. Then we may show that val(

∑m
i=1 Fi, s) =

∑m
i=1 val(Fi, s) for all s.

Fix some s; we prove this statement also using induction. The base case for m = 1 is true
since

∑1
i=1 Fi = F1 and

∑1
i=1 val(Fi, s) = val(F1, s). To prove the induction step from m to

m + 1; assume val(
∑m

i=1 Fi, s) =
∑m

i=1 val(Fi, s). Note that
∑m+1

i=1 Fi = f+(
∑m

i=1 Fi, Fm+1), and
val(f+(

∑m
i=1 Fi, Fm+1), s) = val(

∑m
i=1 Fi, s) + val(Fm+1, s). Hence,

val(

m+1∑
i=1

Fi, s) = val(

m∑
i=1

Fi, s) + val(Fm+1, s) =

m∑
i=1

val(Fi, s) + val(Fm+1, s) =

m+1∑
i=1

val(Fi, s).

Using all these statement, we may notice that

val(

n∑
i=1

xi, s) =

n∑
i=1

val(xi, s) =

n∑
i=1

val(xn−i+1, s) = val(

n∑
i=1

xn−i+1, s).


