Name:

Pid: \qquad

1. (10 points) Let us formulate the pigeonhole principle using propositional formulas. $\Omega=$ $\left\{x_{1,1}, \ldots, x_{n+1,1}, x_{1,2} \ldots, x_{n+1, n}\right\}$ (informally $x_{i, j}$ is true iff the i th pigeon is in the j th hole). Consider the following propositional formulas on the variables from Ω.

- $L_{i}(i \in[n+1])$ is equal to $\bigvee_{j=1}^{n} x_{i, j}$. (Informally this formula says that the i th pigeon is in a hole.)
- $R_{j}(j \in[n])$ is equal to $\bigvee_{i_{1}=1}^{n+1} \bigvee_{i_{2}=i_{1}+1}^{n+1}\left(x_{i_{1}, j} \wedge x_{i_{2}, j}\right)$. (Informally this formula says that there are two pigeons in the j th hole.)

Show that there is a natural deduction proof of $\left(\bigwedge_{i=1}^{n+1} L_{i}\right) \Longrightarrow\left(\bigvee_{i=1}^{n} R_{i}\right)$.
2. (10 points) Let $\phi=\bigvee_{i=1}^{m} \lambda_{i}$ be a clause; we say that the width of the clause is equal to m. Let $\phi=\bigwedge_{i=1}^{\ell} \chi_{i}$ be a formula in CNF; we say that the width of ϕ is equal to the maximal width of χ_{i} for $i \in[\ell]$.
Let $p_{n}:\{T, F\}^{n} \rightarrow\{T, F\}$ such that $p_{n}\left(x_{1}, \ldots, x_{n}\right)=T$ iff the set $\left\{i: x_{i}=T\right\}$ has odd number of elements. Show that any CNF representation of p_{n} has width at least n.
3. (10 points) Write a natural deduction derivation of $(W \vee Y) \Longrightarrow(X \vee Z)$ from hypotheses $W \Longrightarrow X$ and $Y \Longrightarrow Z$.
4. (10 points) We say that a clause C can be obtained from clauses A and B using the resolution rule if $C=A^{\prime} \vee B^{\prime}, A=x \vee A^{\prime}$, and $B=\neg x \vee B^{\prime}$, for some variable x.
We say that a clause C can be derived from clauses A_{1}, \ldots, A_{m} using resolutions if there is a sequence of clauses $D_{1}, \ldots, D_{\ell}=C$ such that each D_{i}

- is either obtained from clauses D_{j} and D_{k} for $j, k<i$ using the resolution rule, or
- is equal to A_{j} for some $j \in[m]$, or
- is equal to $D_{j} \vee E$ for some $j<i$ and a clause E.

Show that if A_{1}, \ldots, A_{m} semantically imply C, then C can be derived from clauses A_{1}, \ldots, A_{m} using resolutions.

