Name:

Pid:

1. (10 points) Show that $1^{2}+2^{2}+3^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6}$ for all integers $n \geq 1$.
2. (10 points) Let $a_{0}=2, a_{1}=5$, and $a_{n}=5 a_{n-1}-6 a_{n-2}$ for all integers $n \geq 2$. Show that $a_{n}=3^{n}+2^{n}$ for all integers $n \geq 0$.
3. (10 points) Let n be a positive integer and A_{1}, \ldots, A_{n} be some sets. Let us define union of these sets as follows:
4. $\cap_{i=1}^{1} A_{i}=A_{1}$,
5. $\cap_{i=1}^{k+1} A_{i}=\left(\cap_{i=1}^{k} A_{i}\right) \cap A_{k+1}$.

Show that $\cap_{i=1}^{n}\{x \in \mathbb{N}: i \leq x \leq n\}=\{n\}$.
4. (10 points) Let U be the set of sequences of the following symbols: "+", ".", " x_{1} ", ..., " x_{n} ". Let $B=\left\{x_{i}: i \in[n]\right\}$; i.e., B is the set of sequences consisting of only one symbol x_{i}. Let $\mathcal{F}=\left\{f_{+}, f.\right\}$, where $f_{+}\left(F_{1}, F_{2}\right)=\left(F_{1}+F_{2}\right)$ and $f .\left(F_{1}, F_{2}\right)=\left(F_{1} \cdot F_{2}\right)$ (by $\left(F_{1} \# F_{2}\right)$ we denote the sequence obtained by concatenating "(", F_{1}, "\#", F_{2}, and ")"). Let S be the set generated by \mathcal{F} from B.
For $s:[n] \rightarrow\{0,1\}$ and $F \in S$, we define the function val (F, s) using structural recursion as follows.

1. $\operatorname{val}\left(x_{i}, s\right)=s(i)$,
2. $\operatorname{val}\left(\left(F_{1}+F_{2}\right), s\right)=\operatorname{val}\left(F_{1}, s\right)+\operatorname{val}\left(F_{2}, s\right)$,
3. $\operatorname{val}\left(\left(F_{1} \cdot F_{2}\right), s\right)=\operatorname{val}\left(F_{1}, s\right) \cdot \operatorname{val}\left(F_{2}, s\right)$.

Let $F_{1}, \ldots, F_{n} \in S$. Let us define the sum of these formulas as follows:

1. $\sum_{i=j}^{j} F_{i}=F_{j}$,
2. $\sum_{i=j}^{j+k} F_{i}=f_{+}\left(\sum_{i=j}^{j+k-1} F_{i}, F_{j+k}\right)$ for $k \geq 1$.

Show that $\operatorname{val}\left(\sum_{i=1}^{n} x_{i}, s\right)=\operatorname{val}\left(\sum_{i=1}^{n} x_{n-i+1}, s\right)$ for any s.

