Name:

Pid:

1. (10 points) Give a natural deduction derivation of $\exists x(A(x) \vee B(x))$ from $\exists x A(x) \vee \exists x B(x)$.
2. (10 points) Let us consider the following formulas on the variables from the set $\left\{x_{0}, \ldots, x_{n}\right\}$.
3. The formula I_{n} is equal to x_{0}.
4. The formula $S_{n, i}$ is equal to $x_{i-1} \Longrightarrow x_{i}$.
5. The formula T_{n} is equal to x_{n}.

Show that there is a natural deduction derivation of T_{n} from $I_{n} \wedge \bigwedge_{i=1}^{n} S_{n, i}$.
3. (10 points) Let $\phi=\bigvee_{i=1}^{m} \lambda_{i}$ be a clause; we say that the width of the clause is equal to m. Let $\phi=\bigwedge_{i=1}^{\ell} \chi_{i}$ be a formula in CNF; we say that the width of ϕ is equal to the maximal width of χ_{i} for $i \in[\ell]$.
Let $m_{n}:\{T, F\}^{n} \rightarrow\{T, F\}$ such that $m_{n}\left(x_{1}, \ldots, x_{n}\right)=T$ iff the number of elements in the set $\left\{i: x_{i}=T\right\}$ is divisible by 3 .
Show that any CNF representation of m_{n} has width at least $n-2$.
4. (10 points) Let $A \Delta B=(A \cup B) \backslash(A \cap B)$; we say that $A \Delta B$ is the symmetric difference of A and B. Let Ω, and $A_{1}, \ldots, A_{n} \subseteq \Omega$ be some sets We say that $\Delta_{i=1}^{1} A_{i}=A_{1}$ and $\Delta_{i=1}^{k+1} A_{i}=\left(\Delta_{i=1}^{k} A_{i}\right) \Delta A_{k+1}$. Show that

$$
\Delta_{i=1}^{n} A_{i}=\left\{x \in \Omega: x \in A_{i} \text { for odd number of } i \in[n]\right\}
$$

5. (10 points) Let \mathcal{S} be a signature with two predicate symbols $=$ and S such that the first is binary and the last is ternary.
Let us consider the structure \mathfrak{M} such that it corresponds to the points on a two-dimmnesional plane, $=$ is a standard equality, and $S(x, y, z)$ is true iff $|x z|=|y z|$.
Let R be a relation such that $(A, B, C) \in R$ iff A, B, and C lay on the same line. Show that R is representable in \mathfrak{M}.
6. (10 points) Let us define the set S defined as follows:

- $3 \in S$ and
- if $x \in S$ and $y \in S$, then $(x+y) \in S$.

Show that $S=\{3 k: k \in \mathbb{N}\}$.
7. (10 points) Let $f, g_{1}, \ldots, g_{n}: \mathbb{R}^{\ell} \rightarrow \mathbb{R}$ We say that the equation $f(x)=0$ can be derived from the equations $g_{1}(x)=0, \ldots, g_{n}(x)=0$ iff there is a sequence of functions $h_{1}, \ldots, h_{m}: \mathbb{R}^{\ell} \rightarrow \mathbb{R}$ such that $h_{m}=f$ and for each $i \in[m]$,

- either h_{i} is equal to g_{j} for some $j \in[n]$, or
- $h_{i}=h_{j}+h_{k}$ for some $1 \leq j, k<i$, or
- $h_{i}=c \cdot h_{j}$ for some $1 \leq j<i$ and some $c \in \mathbb{R}$.

Show that if the equation $f(x)=0$ can be derived from the equations $g_{1}(x)=0, \ldots, g_{n}(x)=0$, then for any $v \in \mathbb{R}^{\ell}, f(v)=0$ provided that $g_{1}(v)=\cdots=g_{n}(v)=0$.

