Lecture 9: Orderings and Connectives
Let $x, y \in \mathbb{Z}$ we say that $x \mid y$ iff $x k=y$ for some $k \in \mathbb{Z}$.
Exercise.
1 defines a partial ordering on \mathbb{Z}
Reflexivity: We need to check that $x \mid x$ So r any $x \in \mathbb{Z}$. Clearly this is true
since $x 01=x$. since $x \cdot 1=x$.

Antisymetry We need to check that if $x \mid y$ and $y \mid x$ for some $x, y \in \mathbb{Z}$, then $x=y$ We know that $x k=y \quad y l=x$

Antisymetry We reed to check that if $x \mid y$ and $y \mid x$ for some $x, y \in \mathbb{Z}$, then $x=y$. We know that $x k=y \quad y l=x$; hence $x k l=x$. So either $x=0$ and $y=0$, or $k l=1$ ie. $k=l=1$.
Transitivity We need to show that if $x|y \quad y| z$, then $x \mid z$

$$
x k=y \quad y l=z \text {; hence } x k l=z
$$

We have a list of steps in a recipe
1 Get Tomato
2. Get mushrooms
3. Get eggs
4. Clop tomatos
s hop mustroanc
6. heat the pan

7 . break the eggs
8 put tomotos into pan
a put mushrooms

Theorem
Let S be some finite set and let \leqslant he a partial ordering of S.
Then there is a total ordering \leqslant_{t} of S st. for any $x, y \in S$, if $x \leqslant y$, then $x \leqslant_{t} y$.

45213
Topological sort

Let us consider the following binary operations over artist?

$$
\begin{array}{l|l}
x & 7 x \\
\hline T & F \\
F & T
\end{array}
$$

AND - Conjunction - N
OR - Disjunction - V
Implication $\begin{aligned} & \Rightarrow \\ & \Longrightarrow\end{aligned}$
Negation $\begin{array}{r}7 \\ 7\end{array}$

Definition Let Ω be set of symbols $U=$ the set of sequences of symb. "ヘ", """ " $\rightarrow^{\prime \prime},, 7$ ", elements of Ω

$$
\begin{aligned}
& J=\left\{f_{1}: U^{2} \rightarrow U, f_{v}: U^{2} \rightarrow U, f_{\Rightarrow}: U^{2} \rightarrow U,\right. \\
& \left.f_{1}: U \rightarrow U\right\} \\
& B=\Omega \\
& f_{1}\left(\varphi_{1}, \varphi_{2}\right)=\left(\varphi_{1} \wedge \varphi_{2}\right) \\
& f_{v}\left(\varphi_{1}, \varphi_{2}\right)=\left(\varphi_{1} \vee \varphi_{2}\right) \\
& \vdots
\end{aligned}
$$

The set generated by F from B is called the set of propositional formulas or Boolean formulas.

