Lecture 7: Relations

Definition
R is a k-ary relation on $X_{1} \ldots X_{n}$ iff $R \subseteq X_{1} \times \ldots \times X_{k}$.

We say that $\left(x_{1} \ldots x_{k}\right) \in X_{1} x_{\ldots} \ldots X_{k}$ is in relation R if $\left(x_{1}, \ldots x_{k}\right) \in R$

If $k=2$, we say that $R_{\text {a binary relation }}$ and instead of writing $\left(x_{1}, x_{2}\right) \in R$ we write $x_{1} R_{x}$
If $X_{1}=X_{2} \ldots-X_{k}=X$, then R is a relation on X.

Definition
Let R be a binary relation on a set X. We say that R is an equivalence relation if the following is thee.
(reflexivity) for any $x \in X, x R_{x}$.
(symmetry) for any $x, y \in X, x R_{y}$ if $y R x$
(transitivity) For any $x, y, z \in X$, if $x R y$ and $y R z$, then $x R_{z}$.
Example

1. The relation "have the same cardinality" is an equivalence relation.
2. Let $n \in \mathbb{N}$ We say that $x, y \in \mathbb{Z}$ are equivalent modulo n (we write it as $x \equiv y(\bmod n))$ iff $x-y$ is divisible by h.

$$
\begin{gathered}
x-y=n k \quad y-z=n l \Rightarrow \quad x-y+y-z=n(k+l) \\
x^{\prime \prime}-z
\end{gathered}
$$

3. Let δ be a set of symbols of the form $\frac{x}{y}$, where $x, y \in \mathbb{Z}$ and $y \neq 0$.
Consider a relation m on S s.t. $\frac{a}{b} \sim \frac{c}{d} \quad$ iff. $\quad a d=b c$

Exercise show that τ is un eq. vel.

1. $\frac{a}{b} \sim \frac{a}{b} \Leftrightarrow a b=a b$ for any $a, b \in \mathbb{Z}, b \in 0$
2.

$$
\begin{aligned}
& \frac{a}{b}=\frac{c}{d} \Leftrightarrow \frac{c}{d} \sim \frac{a}{b} \\
& a d=b c \Leftrightarrow c b^{\|}=a d
\end{aligned}
$$

3. assume

$$
\begin{aligned}
& \left.\begin{array}{l}
\text { assume } \\
\frac{a}{b} \sim \frac{c}{d} \quad \frac{c}{d} \sim \frac{e}{f} \stackrel{?}{\Longrightarrow} \Rightarrow \quad \frac{a}{b} \sim \frac{e}{f} \\
a d=b c \quad c f=d e \\
a=\frac{\pi}{d}=e b \\
a f
\end{array} \quad a f=\frac{b e}{d} f\right) \Rightarrow a f=\frac{b d e}{d} \Leftrightarrow a f=b e
\end{aligned}
$$

