Lecture Definition Let S be a signature. Let Z be a set of pred. formulas in S and P be a pred. formula in S' We say that ZE4 iff Lat S=(P) whenever Z is frie, 4 $= \forall \times P(x) = \forall \times P(x)$ tue as well to answer the grastion you need a structure For any structure in Mand an assignment 5, if UEZIS] 4 = P(y) A Zx P(-) then Ju = 425] M = (M is even) This missis that #462 U=405)

following form i) τ (aca) i) τ (aca) i) $(acb \wedge bcc)$ s) $acb = \tau (b < a)$ Let Ψ be $\exists x$ Duestion: Is it the Note that $H =$	$(\leq) \text{Let}$ $=> a < C 1) a$ $\Rightarrow a < C 1) a$ $(a) \forall y x < y$ $\forall y x < y$ $\forall y x < y$ $(a) b = \psi$	$ \sum be the set of $ $ 4a + 6ec + 2a + 6ec + 6ec$	• • • • • • • • •
but 4 is fo	lse since x <x< th=""><th>is folse notice that $M \neq q$</th><th>•</th></x<>	is folse notice that $M \neq q$	•
		but MFZ[3] tor	•
	they to formulate	that there are only 3 elements	
· · · · · · · · · · · · · · · · · · ·		W=* v w=y v w= ?	•
Shaw that Z	$= \mathbf{J} \times \mathbf{y} \mathbf{z} + \mathbf{w}$ $\mathbf{u} + \mathbf{y} \mathbf{z} + \mathbf{\varphi}$	$(w \in x \lor x \in w) \land \dots = 2$	•
Shaw that Z	$= 3 \times \mathbf{y} \mathbf{z} + \mathbf{w}$ $= \mathbf{y} \mathbf{y} \mathbf{z} + \mathbf{w}$	$(w \leq x \vee x \leq n) \wedge \dots$	•
Shas that Z	$= 3 \times y \notin W$ $= 4 W$	$(w \in x \lor x \neq w) \land \dots$	•
Shas that Z	$= 3 \times y \geq \forall w$ $= 1 \psi g \neq \varphi$	$W = \forall W = \mathcal{Y} W = \mathcal{F}$ $(W \leq \chi \land \times \leq W \setminus V) = \mathcal{F}$	• • • • • • •
Shas that Z	$= 3 \times y \notin W$	$w = x \circ w = y \circ w = z$	· · · · · · · · · · · · · · · · · · ·