Lecture

Definition
Let S be a signature. Let Σ be a set of pred formulas in S and φ be a pred formula in S

We say that $\Sigma=\varphi$ if whenever \sum is the ie, U is true as well

For any structure in M and an assignement s, if $\mu \vDash \sum[s]$ then $M \vdash \varphi_{[s]}$.

$$
\text { Chis mine that } \forall \psi \in \Sigma \quad \mu \in \psi \tau 5
$$

Let $S=(P)$

$$
\varphi=\forall x P(x)
$$

to answer the question you need a structure
$\psi=P(y) \wedge 3 \times P(v)$
$\mathcal{M}=(\mathbb{N}$; is ever)

Consider $S=(\leqslant)$ Let Σ be the set of following formulas:

1) $7(a<a)$
2) $(a<b \wedge b<c) \Rightarrow a<c$
3) $a \leq a$
4) $a<b \Rightarrow 7(B<a)$

Let φ be $\exists x \forall y \quad x \leqslant y$
Question: Is it the that $\Sigma=\varphi$?
Note thad $\mu=(\mathbb{N},<)$ make Σ to be true

$$
M=(\mathbb{Z} ; \leqslant)
$$

but φ is false since $x<x$ is false
notice that $\mu \notin \varphi$ but $M F \sum[s]$ tor ans.
How to formulate that there are only 3 elements.

$$
\psi=\exists \times y z \quad \forall w \underset{(w \leq x \wedge x \leq v) \cup}{w=w) w=z}
$$

Show that $\sum u\{\psi\} \vDash \varphi$

