Lecture 1 Mathematical Induction
Theorem (Induction Principle)
Let $P(n)$ be some statement about a positive integer n.
$P(n)$ is true for all positive integers n iff
$-P(1)$ is true and

- $P(k)$ implies $P(x+1)$.

Example show that $\int_{0}^{ \pm} x^{n} e^{-x} d x=n$!
Proof Let's start from proving the base case; ie.

$$
\int_{0}^{+\infty} x e^{-x} d x=1
$$

Note that $\int_{0}^{+\infty} x e^{-x}=\left.x\left(-e^{-x}\right)\right|_{0} ^{+\infty}-\int_{0}^{+\infty} 1 \cdot\left(-e^{-x}\right)=$

$$
=0+\int_{0}^{+\infty} e^{-x} d x=\left.\left(-e^{-x}\right)\right|_{0} ^{+\infty}=1
$$

Now we are ready to prove the induction step from n to $n+1$.
The induction hypothesis is that

$$
\begin{aligned}
& \int_{0}^{+\infty} x^{n} e^{-x} d x=n! \\
& \int_{0}^{+\infty} x^{n+1} e^{-x}=\left.x^{n+1}\left(-e^{-x}\right)\right|_{0} ^{+\infty}-\int_{0}^{+\infty}(n+1) x^{n} e^{-x} d x= \\
& =0+(n+1) \int_{0}^{+\infty} x^{n} e^{-x} d x{\underset{\tau}{\uparrow}}_{=}(n+1)!
\end{aligned}
$$

by the I.H.

Exercise Show that

$$
\sum_{k=1}^{n} k \cdot k!=(n+1)!-1
$$

The induction step is clear since

$$
1 \cdot 1!=2 \cdot 1-1
$$

Let us prove the induction step.
By the induction hypothesis, $\sum_{n=1}^{n} k \cdot k!=(n+1)!-1$
Hence, $\sum_{k=1}^{n+1} k \cdot k!=\sum_{k=1}^{n} k \cdot k!+(n+1)(n+1)!=$

$$
\begin{aligned}
& =(n+1)!-1+(n+1)(n+1)!=(n+1)!(n+1+1)-1= \\
& =(n+2)!-1
\end{aligned}
$$

Exercise Show that

$$
\sum_{i=1}^{n} \frac{1}{i^{2}} \leqslant 2
$$

It's enough to show that $\sum_{i=1}^{n} \frac{1}{j^{2}} \leq 2-\frac{1}{n}$ since $2-\frac{1}{n}<2$.
We prove this using induction by n.
The base case is true since $\frac{1}{1} \leq 2-1$
Let us now prove the induction step from n to $n+1$. By the induction hypotesis, $\sum_{i=1}^{n} \frac{1}{i^{2}} \leq 2-\frac{1}{n}$ Note that $\sum_{i=1}^{n+1} \frac{1}{i}=$

$$
\begin{aligned}
& =\sum_{i=1}^{n} \frac{1}{i^{2}}+\frac{1}{(n+1)^{2}} \leq 2-\frac{1}{n}+\frac{1}{(n+1)^{2}}= \\
& =2-\left(\frac{n^{2}+2 n+1-n}{n(n+1)^{2}}\right)=2-\frac{1}{n+1}\left(\frac{n^{2}+n+1}{n(n+1)}\right) \leqslant \\
& \leq 2-\frac{1}{n+1}
\end{aligned}
$$

