Name:

Pid: \qquad

1. Show that $\sum_{i=1}^{n}(i+1) 2^{i}=n 2^{n+1}$ for all positive integers n.

Solution: We prove the statement using induction by n. The base case for $n=1$ is true since $4=(1+1) \cdot 2=1 \cdot 2^{1+1}=4$.
Now we need to prove the induction step. Let us assume that $\sum_{i=1}^{n}(i+1) 2^{i}=n 2^{n+1}$. Note that $\sum_{i=1}^{n+1}(i+1) 2^{i}=\sum_{i=1}^{n}(i+1) 2^{i}+(n+2) 2^{n+1}=n 2^{n+1}+(n+2) 2^{n+1}=(2 n+2) 2^{n+1}=(n+1) 2^{n+2}$. Hence, by the induction principle $\sum_{i=1}^{n}(i+1) 2^{i}=n 2^{n+1}$ for any positive integer n.
2. Let n be a positive integer and A_{1}, \ldots, A_{n} be some sets. Let us define union of these sets as follows:

1. $\cup_{i=1}^{1} A_{i}=A_{1}$,
2. $\cup_{i=1}^{k+1} A_{i}=\left(\cup_{i=1}^{k} A_{i}\right) \cup A_{k+1}$.

Show that $\cup_{i=1}^{n}[i]=[n]$.

Solution: We prove the statement using induction by n. If $n=1$, the statement is true since $\cup_{i=1}[i]=[1]=[1]$.
To prove the induction step we assume that $\cup_{i=1}^{n}[i]=[n]$. By the definition of the union $\cup_{i=1}^{n+1}[i]=$ $\left(\cup_{i=1}^{n}[i]\right) \cup[n+1]$. Hence, $\cup_{i=1}^{n+1}[i]=[n] \cup[n+1]=[n+1]$.
Therefore by the induction principle, $\cup_{i=1}^{n}[i]=[n]$ for any positive integer n.
3. (10 points) Let Ω be some set. Consider $A_{1}, \ldots, A_{n} \subseteq \Omega$. Show that $\cup_{i=1}^{n} A_{i}=$ $\left\{x \in \Omega: \exists i \in[n] x \in A_{i}\right\}$.

Solution: We prove the statement using induction by n. For $n=1$ the statement is clearly true. Let us now prove the induction step from n to $n+1$. Assume that $\cup_{i=1}^{n} A_{i}=\left\{x \in \Omega: \exists i \in[n] x \in A_{i}\right\}$. Note that $\cup_{i=1}^{n+1} A_{i}=\left(\cup_{i=1}^{n} A_{i}\right) \cup A_{n+1}=\left\{x \in \Omega: \exists i \in[n] x \in A_{i}\right\} \cup A_{n+1}$. We denote $\left\{x \in \Omega: \exists i \in[n] x \in A_{i}\right\}$ by B. By the definition of union, $B \cup A$ is the set of all x such that either $x \in B$ or $x \in A_{n+1}$; therefore

$$
B \cup A=\left\{x \in \Omega:\left(\exists i \in[n] x \in A_{i}\right) \text { or } x \in A_{n+1}\right\}=\left\{x \in \Omega: \exists i \in[n+1] x \in A_{i}\right\}
$$

Which finishes the proof.

