\qquad

Pid: \qquad

1. (a) (10 points) Let ϕ, ψ, and χ be propositional formulas on Ω. Show that $\left.(\phi \vee(\psi \wedge \chi))\right|_{\rho}=((\phi \vee \psi) \wedge$ $(\phi \vee \chi))\left.\right|_{\rho}$ for any assignment ρ to the variables Ω.
(b) (10 points) Let $\psi_{1,1}, \ldots, \psi_{1, n}, \psi_{2,1}, \ldots, \psi_{2, m}$ be propositional formulas on Ω. Let $\phi_{1}=\bigwedge_{i=1}^{n} \psi_{1, i}$ and $\phi_{2}=\bigwedge_{j=1}^{m} \psi_{2, j}$.
Show that $\left.\left(\phi_{1} \vee \phi_{2}\right)\right|_{\rho}=\left.\left(\bigwedge_{i=1}^{n} \bigwedge_{j=1}^{m}\left(\psi_{1, i} \vee \psi_{2, j}\right)\right)\right|_{\rho}$ for any assignment ρ to the variables Ω.
(c) (10 points) Let Ω be a set of variables. We say that a propositional formula is a literal if the formula is equal to x or $\neg x$ for $x \in \Omega$.
We say that a propositional formula on Ω is in conjunctive normal form if it is equal to $\bigwedge_{i=1}^{n} \bigvee_{j=1}^{m_{i}} \psi_{i, j}$, where $\psi_{i, j}$ is a literal.
Let ϕ be a propositional formula on Ω. Show using structural induction that there is a propositional formula ψ on Ω in conjunctive normal form such that $\left.\psi\right|_{\rho}=\left.\phi\right|_{\rho}$ for any assignment ρ to Ω.
