Name:

Pid:

1. Show that $\sum_{i=1}^{n}(i+1) 2^{i}=n 2^{n+1}$ for all positive integers n.
2. Let n be a positive integer and A_{1}, \ldots, A_{n} be some sets. Let us define union of these sets as follows:
3. $\cup_{i=1}^{1} A_{i}=A_{1}$,
4. $\cup_{i=1}^{k+1} A_{i}=\left(\cup_{i=1}^{k} A_{i}\right) \cup A_{k+1}$.

Show that $\cup_{i=1}^{n}[i]=[n]$.
3. (10 points) Let Ω be some set. Consider $A_{1}, \ldots, A_{n} \subseteq \Omega$. Show that $\cup_{i=1}^{n} A_{i}=$ $\left\{x \in \Omega: \exists i \in[n] x \in A_{i}\right\}$.

