Name: _____

Pid: _____

- 1. (8 points) Check all the correct statements.
 - \bigcirc The statement $x \in \{1, 2\}$ implies the statement $x^2 3x + 2 = 0$ for all real numbers x.
 - \bigcirc The sets $\{-1, -2\}$, \mathbb{N} , $\{\pi\}$ are pairwise disjoint.
 - \bigcirc The sets $\{x \in \mathbb{R} : \exists y \in \mathbb{Q} \ y^2 = x\}$ is equal to \mathbb{Q} .
 - $\bigcirc \text{ The sets } \{x \in \mathbb{R} : x \leq 100\} \Delta \{x \in \mathbb{R} : x \geq -100\} \text{ is equal to } \emptyset.$
 - $\bigcirc \text{ The set } \{a,b\}\times\{c,d\} \text{ is equal to } \{(a,c),(c,a),(b,d),(d,b)\}.$

2. (10 points) Let Ω be some set and $A_1, \ldots, A_n \subseteq \Omega$. Show that $\bigcup_{i=1}^n A_i = \{x \in \Omega : \exists i \in [n] \ x \in A_i\}.$

3. (10 points) Let A_1, \ldots, A_n be some sets. Show that $\bigcup_{i=1}^n (A_i \cap B) = (\bigcup_{i=1}^n A_i) \cap B$.

4. (10 points) Show that $A\Delta(B\Delta C) = (A\Delta B)\Delta C$.

5. (10 points) Let us define n! (n is a natural number) such that 1! = 1 and $(n+1)! = n! \cdot (n+1)$. Show that $\sum_{k=1}^{n} k \cdot k! = (n+1)! - 1$.