Name:

Pid: \qquad

1. (8 points) Check all the correct statements.

The statement $x \in\{1,2\}$ implies the statement $x^{2}-3 x+2=0$ for all real numbers x.The sets $\{-1,-2\}, \mathbb{N},\{\pi\}$ are pairwise disjoint.The sets $\left\{x \in \mathbb{R}: \exists y \in \mathbb{Q} y^{2}=x\right\}$ is equal to \mathbb{Q}.The sets $\{x \in \mathbb{R}: x \leq 100\} \Delta\{x \in \mathbb{R}: x \geq-100\}$ is equal to \emptyset.The set $\{a, b\} \times\{c, d\}$ is equal to $\{(a, c),(c, a),(b, d),(d, b)\}$.
2. (10 points) Let Ω be some set and $A_{1}, \ldots, A_{n} \subseteq \Omega$. Show that $\bigcup_{i=1}^{n} A_{i}=\left\{x \in \Omega: \exists i \in[n] x \in A_{i}\right\}$.
3. (10 points) Let A_{1}, \ldots, A_{n} be some sets. Show that $\bigcup_{i=1}^{n}\left(A_{i} \cap B\right)=\left(\bigcup_{i=1}^{n} A_{i}\right) \cap B$.
4. (10 points) Show that $A \Delta(B \Delta C)=(A \Delta B) \Delta C$.
5. (10 points) Let us define $n!(n$ is a natural number) such that $1!=1$ and $(n+1)!=n!\cdot(n+1)$. Show that $\sum_{k=1}^{n} k \cdot k!=(n+1)!-1$.

