Name:

Pid: \qquad

1. (10 points) Let us define a union of more than two sets as follows. Let A_{1}, \ldots, A_{n} be some sets. Then

- $\bigcup_{i=1}^{1} A_{i}=A_{1}$ and
- $\bigcup_{i=1}^{k+1} A_{i}=\left(\bigcup_{i=1}^{k} A_{i}\right) \cup A_{k+1}$.

Show that $\bigcup_{i=1}^{n}[i]=[n]$ for all integers $n>0$.
2. (10 points) Let us define an intersection of more than two sets as follows. Let A_{1}, \ldots, A_{n} be some sets. Then

- $\bigcap_{i=1}^{1} A_{i}=A_{1}$ and
- $\bigcap_{i=1}^{k+1} A_{i}=\left(\bigcap_{i=1}^{k} A_{i}\right) \cap A_{k+1}$.

Show that $\bigcap_{i=1}^{n}\{x \in \mathbb{N}: i \leq x \leq n\}=\{n\}$ for all integers $n>0$.

