Name:

Pid: \qquad

1. (10 points) Let a_{n} be a sequence such that $a_{1}=9, a_{2}=41$, and $a_{n+2}=9 a_{n+1}-20 a_{n}$. Show that $a_{n}=4^{n}+5^{n}$.
2. We say that L is a list of powers of x iff

- either $L=x^{k}$ for some positive integer k or
- $L=\left(x^{k}, L^{\prime}\right)$ where L^{\prime} is a list of powers of x and k is a positive integer.

Let L be a list of powers of x. We say that the sum of L with $x=v$ denoted by $\left.\sum L\right|_{x=v}$

- is equal to v^{k} whether $L=x^{k}$ and
- is equal to $v^{k}+\left.\sum L^{\prime}\right|_{x=v}$ whether $L=\left(x^{k}, L^{\prime}\right)$.

Prove that for any list L of powers of x there is a polynomial such that $\left.\sum L\right|_{x=v}=p(v)$ for all real numbers v.
3. (10 points) Prove that $\sum_{i=1}^{n}(i+1) 2^{i}=n 2^{n+1}$ for all integers $n \geq 1$.

