
Chapter 9

Counting Principles

9.1 The Additive Principle
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Counting Principles

The first principle is called additive principle and it
states that if you have two disjoint sets, then their
union have size equal to the sum of their sizes.

A simple illustration of this statement is the fol-
lowing. Assume you have three pencils and two
pens; how many ways to choose a writing accessory.
According to this principle the answer is 2+ 3 = 5.

Theorem 9.1 (The Additive Principle). Let X
and Y be finite sets. If X \ Y = ;, then |X [ Y | =
|X|+ |Y |.

Proof. Let |X| = n, |Y | = m and g : [n] ! X and h : [m] ! Y be bijections. In
order to prove it we just construct a bijection f : [n+m] ! (X [ Y ).

f(i) =

(
g(i) i < n

h(i� n) i > n
.

It’s easy to see that f is an injection. Indeed, assume the opposite i.e. that
there are i0 6= i1 2 X [ Y such that f(i0) = f(i1). There are three cases.

• The first is when i0, i1 2 [n]. In this case g(i0) = g(i1) which contradicts
the assumption that g is a bijection.

• The second is when i0, i1 2 {n+ 1, n+ 2, . . . ,m}. In this case h(i0�n) =
h(i1 � n) which contradicts the assumption that h is a bijection.

• Finally, the last case is when i0 2 [n] and i1 2 {n+ 1, n+ 2, . . . ,m}. It
is easy to see that this implies that g(i0) = h(i1 � n). However, it means
that g(i0) = h(i1 � n) 2 (X \ Y ), which contradicts the assumption that
X \ Y = ;.
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To finitsh the proof we need to show that f is a surjection. Let w 2 (X[Y ).
Consider the following two cases.

• Let w 2 X. There is i 2 [n] such that f(i) = g(i) = w since g is a
bijection.

• Otherwise, w 2 Y . In this case, there is i 2 [m] such that f(i + n) =
h(i) = w since h is a bijection.

Corollary 9.1. Let X1, . . . , Xn be some pairwise disjoint sets. Then |
Sn

i=1 Xi| =Pn
i=1 |Xi|.

Exercise 9.1. Prove Corollary 9.1.

9.2 The Multiplicative Principle

The next principle is called the multiplicative principle and it can be illustration
as follows: imagine that you are given two postal stamps and three envelopes,
how many ways to pack the letter? The answer is obviously 2 · 3 = 6.

Theorem 9.2 (The Multiplicative Principle). Let X and Y be finite sets. Then
|X ⇥ Y | = |X|⇥ |Y |.

Proof. If one of the sets X and Y are empty, then X ⇥ Y is empty as well and
the statement follows.

Assume that none of the sets is empty. Let |X| = n, |Y | = m, and f :
[n] ! X and g : [m] ! Y be bijections. Note that

Sn
i=1({f(i)}⇥ Y ) = X ⇥ Y .

Additionally, note that ({f(i)} ⇥ Y ) \ ({f(j)} ⇥ Y ) = ; for i 6= j. Finally, it
is easy to see that gi : [m] ! ({f(i)} ⇥ Y ) such that gi(j) = (f(i), g(j)) is a
bijection. Hence, |X ⇥ Y | =

Pn
i=1 | {f(i)}⇥ Y | = n ·m.

Exercise 9.2. Find the cardinality of the set {(x, y) : x, y 2 [9] and x 6= y}.

By analogy with unions and intersections of many sets we can define the
cross product of many sets. Let A1, . . . , An be some sets. Then⇥1

i=1
Ai = A1

and⇥k+1

i=1
Ai =

⇣
⇥k

i=1
Ai

⌘
⇥Ak+1

1.

Corollary 9.2. Let X1, . . . , Xn be some finite sets. Then
��⇥n

i=1
Ai

�� =
Qn

i=1 |Xi|.

Exercise 9.3. Prove Corollary 9.2.

Theorem 9.3. For any set |X|, |2X | = 2|X|.

Proof. By Corollary 8.1, |2X | =
���{0, 1}|X|

���, so it is enough to prove that | {0, 1}|X| | =

2|X|. This statement is true by Corollary 9.2 since | {0, 1}|X| | =
Q|X|

i=1 | {0, 1} | =
2|X|.

1
Note that cross product is not associative and different definitions of the product of several

sets are not equivalent. However, the bijection constructed in the previous section allow us to

think about these definitions as if they are equivalent.
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9.3 The Inclusion-exclusion Principle

The last principle we are going to discuss in this chapter is the inclusion-
exclusion principle which helps us to find the size of the union of sets when
they are not disjoint.

Theorem 9.4 (The Inclusion-exclusion Principle). Let X and Y be finite sets.
Then |X [ Y | = |X|+ |Y |� |X \ Y |.

Proof. Note that X [ Y = (X \ Y ) [ (Y \ X) [ (X \ Y ). Hence, |X [ Y | =
|X \Y |+ |Y \X|+ |X\Y |. But it is possible to note that |Y \X|+ |X\Y | = |Y |
and |X \ Y |+ |X \ Y | = |X|.

Corollary 9.3. Let X1, . . . , Xn be some finite sets. Then

�����

n[

i=1

Xi

����� =
X

S✓[n] : S 6=;

(�1)|S|+1

�����
\

i2S

Xi

����� .

Proof. As always, we prove this statement using induction by n. The base case
for n = 2 is true by Theorem 9.4.

By the induction hypothesis,

�����

k[

i=1

Xi

����� =
X

S✓[k] : S 6=;

(�1)|S|+1

�����
\

i2S

Xi

����� .

In addition, by Theorem 9.4,

�����

k+1[

i=1

Xi

����� =

�����

k[

i=1

Xi

�����+ |Xk+1|�

�����

 
k[

i=1

Xi

!
\Xk+1

����� .

We need to simplify two elements of the sum on the right of the equality. By
the induction hypothesis,

�����

k[

i=1

Xi

����� =
X

S✓[k] : S 6=;

(�1)|S|+1

�����
\

i2S

Xi

����� .

In addition, it is esy to note that

�����

 
k[

i=1

Xi

!
\Xk+1

����� =

�����

k[

i=1

(Xi \Xk+1)

����� .
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Thus using the induction hypothesis,

�����

 
k[

i=1

Xi

!
\Xk+1

����� =

X

S✓[k] : S 6=;

(�1)|S|+1

�����
\

i2S

(Xi \Xk+1)

����� =

X

S✓[k+1] : (k+1)2S and S 6={k+1}

(�1)|S|

�����
\

i2S

Xi

����� .

As a result,

|Xk+1|�

�����

 
k[

i=1

Xi

!
\Xk+1

����� =
X

S✓[k+1] : (k+1)2S

(�1)|S|+1

�����
\

i2S

Xi

����� .

Which implies that

�����

k+1[

i=1

Xi

����� =
X

S✓[k] : S 6=;

(�1)|S|+1

�����
\

i2S

Xi

�����+

X

S✓[k+1] : (k+1)2S

(�1)|S|+1

�����
\

i2S

Xi

����� =

X

S✓[k+1] : S 6=;

(�1)|S|+1

�����
\

i2S

Xi

����� .

End of The Chapter Exercises

9.4 How many numbers from [999] are not divisible neither by 3, nor by 5,
nor by 7.

9.5 How many numbers x from 1 to 999 such that at least one of the digits of
x is 7?

9.6 Let A,B be some finite sets such that A ✓ B. Show that |A\B| = |A|�|B|.

9.7 Let n be some positive integer. Find the cardinality of the set

{(A,B) : A,B ✓ [n] and A \B 6= ;}?


