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Functions and Quantifiers

Another important type of objects in mathematics
are functions. Function f from a set X to a set Y
(we write it as f : X ! Y ) is a unique assignment
of elements of Y to the elements of X. In other
words, for each element x 2 X there is one assigned
element f(x) 2 Y . We call such an element the
value of f at x, we also say that f(x) is an image
of x.

Unfortunately, the definition is not formal. In
the rest of the chapter we are going to give a more
formal definition.

6.1 Quantifiers.

The first ingredient is called quantifiers. Very often we use phrases like “all the
people in the class have smartphones.” However, we still do not know how to
write it using symbols.

The Universal Quantifier. In order to say “all” or “every” we use the symbol
8: if P (a) is a predicate about a 2 A, then 8a 2 A P (a) is a statement saying
that all the elements of A satisfy the predicate P . In other words it is the same
as the statement {a 2 A : P (a)} = A. For example, 8x 2 R x · 0 = 0 says that
product of every real number and zero is equal to zero.

The Existential Quantifier. The second quantifier means “there is” and
denoted by the symbol 9: if P (a) is a predicate about an element of A, then
9a 2 A P (a) says that there is an element of A satisfying the predicate P i.e.
{a 2 A : P (a)} 6= ;. For example, 9x 2 R x2� 1 = 0 states that there is a real
solution of the equation x2 � 1 = 0.
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Warning: Note that the word “any” sometimes indicates a universal
statement and sometimes an existential statement.
Standard meaning of “any” is “ever” like in the statement “a2 � 0 for any
real number”, therefore this statement can be rewritten as 8a 2 R a2 �
0. Nonetheless, in the negative and interrogative statements “any” is
used to mean “some”. For example, “There is not any real number a
such that a2 < 0” is asserting that the statement 9a 2 R a2 < 0 is false.
And “Is there any real number a such that a2 = 1?” is asking whether
the existential statement 9a 2 R a2 = 1 is true.
Real care is required with questions involving “any”: “Is there any integer
a such that a � 1?” clearly is asking whether 9a 2 R a2 � 1 is true;
however, “Is a � 1 for any integer a” is less clear and might be taken
to asking about the same question as the first question, 9a 2 Z a � 1
(which is true) but might also be taken to be asking about 8a 2 Z a � 1
(which is false).

6.1.1 Proving Statements Involving Quantifiers
Most of the statements in mathematics involve quantifiers. This is one of the
factors distinguishing advanced from elementary mathematics. In this section
we give an overview of the main methods of proof. Though the whole book is
about proving such results.

Proving statements of the form 8a 2 A P (a). Such statements can be
rewritten in the form a 2 A =) P (a). For example, we proved earlier that
a2 � 0 for all real numbers a using this approach.

Proving statements of the form 9a 2 A P (a). The easiest way to prove
such a statement is by simply exhibiting an element a of A such that P (a) is
true. This method is called proof by example.

Let us prove the statement 9x 2 N x2 = 4 using this method. Observe that
2 2 N and 22 = 4 so x = 2 provides an example proving this statement. There
are, however, less direct methods such as use of the counting arguments.

Proving statements involving both quantifiers. To illustrate problems
of this type let us prove that for any integer n, if n is even, then n2 is also even.

This statement is a universal statement 8n 2 Z (n is even =) n2 is even).
However, the hypothesis that n is even is an existential statement 9q 2 Z n = 2q.
So we begin the proof as follows:

Suppose that n is an even integer. Then n = 2q for some integer q.

The conclusion we wish to prove is that n2 is even, which may be written as
9q 2 Z n2 = 2q. Note that q here is a dummy variable used to express the
statement n2 is a doubled integer. We may replace it by any other letter not
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already in use, for example 9p 2 Z n2 = 2p. Hence, if we present p such that
n2 = 2p we finish the proof. As a result, we can complete the proof as follows.

Therefore, n2 = (2q)2 = 4q2 and so, since 2q2 is an integer n2 is even.

6.1.2 Disproving Statements Involving Quantifiers
Disproving something seems a bit off from the first glance, but to some extent
it is the same as proving the negation.

Disproving statements of the form 8a 2 A P (a). We may note that
the negation of such a statement is the statement 9a 2 A ¬P (a). So we can
disprove it by giving a single example for which it is false. This is called Disproof
by counterexample to P (a).

For example, we may disprove the statement 8x 2 R x2 > 2 by giving a
counterexample x = 1 since 12 = 1 < 2.

Disproving statements of the form 9a 2 A P (a). The negation of this
statement is the statement 8a 2 A ¬P (a). Which gives one way of disproving
the statement.

Let us prove that does not exist a real number x such that x2 = �1. We
know that, for all x 2 R, we have the inequality x2 � 0 and so x2 6= �1. Hence,
there does not exist x 2 R such that x2 = �1.

6.2 Cartesian product

Another ingredient is the notion of Cartesian product. If X and Y are two
sets, then X ⇥ Y = {(x, y) : x 2 X and y 2 Y }. When X = Y we denote
X ⇥X = X2.

Consider the following example. If X = {a, b, c} and Y = {a, b}, then

X ⇥ Y = {(a, a), (a, b), (b, a), (b, b), (c, a), (c, b)} .

Additionally, R2 = R⇥ R is the familiar 2-dimensional Euclidean plane.

Exercise 6.1. Find the set {a, b}⇥ {a, b} \ {(x, x) : x 2 {a, b}}

Theorem 6.1. For all sets A, B, C, and D the following hold:

• A⇥ (B [ C) = (A⇥B) [ (A⇥ C);

• A⇥ (B \ C) = (A⇥B) \ (A⇥ C);

• (A⇥B) [ (C ⇥D) ✓ (A [ C)⇥ (B [D);

• (A⇥B) \ (C ⇥D) = (A \ C)⇥ (B \D).
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Proof. It is easy to prove this statement by the definitions. Let us prove only
the second equality, the rest is Exercise 6.2.

Note that (x, y) 2 A ⇥ (B \ C) iff x 2 A and y 2 (B \ C). Hence, (x, y) 2
A ⇥ (B \ C) iff x 2 A, y 2 B, and y 2 C. Thus (x, y) 2 A ⇥ (B \ C) iff
(x, y) 2 (A ⇥ B) and (x, y) 2 (A ⇥ C). As a result, (x, y) 2 A ⇥ (B \ C) iff
(x, y) 2 (A⇥B) \ (A⇥ C) as required.

Exercise 6.2. Prove the rest of the equalities in Theorem 6.1.

6.3 Graphs of Functions

Now we have all the components to define a function. Mathematicians think
about the functions in the way we defined them at the beginning of the chapter,
however formally in order to define a function f : X ! Y one need to define a
set D ✓ X ⇥ Y (such a set is called the graph of the function f) such that

• 8x 2 X 9y 2 Y (x, y) 2 D and

• 8x 2 X, y1, y2 2 Y ((x, y1) 2 D ^ (x, y2) =) y1 = y2).

We say that y 2 Y is the value f(x) of the function described by D at x 2 X
iff (x, y) 2 D.

The simplest way to think about the functions is in the terms of tables. Let
us use this idea to list all the functions {a, b, c} to {d, e}.

x f1(x) f2(x) f3(x) f4(x) f5(x) f6(x) f7(x) f8(x)
a d d d d e e e e
b d d e e d d e e
c d e d e d e d e

Exercise 6.3. List all the functions from {a, b} to {a, b}.

However, listing all the values of a function is only possible when the domain
of the function is finite. Thus the most common way to describe a function is
using a formula which provides a way to find the value of a function. When the
function is defined as a formula it is important to be clear which sets are the
domain and the codomain of the function.

Let R+ = {x 2 R : x � 0}. Consider the following functions.

• g1 : R ! R such that g1(x) = x2;

• g2 : R+ ! R such that g2(x) = x2;

• g3 : R ! R+ such that g3(x) = x2;

• g4 : R+ ! R+ such that g4(x) = x2;

Nonetheless that all these functions are defined using the same formula x2, we
will see in the next chapters that these four functions have different properties.
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Exercise 6.4. Find the graph of the function f : Z ! Z such that f(x) = 3x.

Note that when you define the function you need to define it such that the
definition makes sense for all the elements of the domain. For example, the
formula g(x) = x2�3x+2

x�1 does not define a function from R to R since it is
not defined for x = 1. It is typical to define a function from real numbers to
real numbers by a formula and the convention is that the domain is the set of
all numbers for which the formula makes sense (unless the domain is specified
explicitly). Using this convention the formula g defines a function from R \ {1}
to R.

If we really need a function from R there are two possible approaches for
extending g.

Rewriting the formula. We can rewrite the formula such that it makes sense
for all the real numbers. Note that for all x 2 R \ {1},

x2 � 3x+ 2

x� 1
=

(x� 2)(x� 1)

x� 1
= x� 2.

Then g1(x) = x� 2 defines a function on R extending the function g.

Explicit definition. Alternatively we can explicitly specify the value of g at
1. So

g2(x) =

(
x2�3x+2

x�1 if x 6= 1

�1 if x = 1

defines a function from R to R. Note that we can specify the values at individual
points any way we want.

Similarly to sets we may define the equality between functions. We say that
two functions f, g : X ! Y are equal (f = g) iff f(x) = g(x) for all x 2 X i.e.
their graphs are equal. Note that two functions are equal only if they have the
same domains and codomains. For example, g1 and g2 we just defined are equal
to each other none the less that we defined them in two different ways.

We defined g1 and g2 to extend g to a bigger domain, similarly we can make
a domain smaller.

Definition 6.1. Let f : X ! Y and A ✓ X. Then f |A : A ! Y is a function
such that 8x 2 A f |A(x) = f(x).
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6.4 Composition of Functions

f
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�
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�

g � f

Suppose f : X toY and g : Y ! Z be some function. Then, given an
element x 2 X, the function f assigns y = f(x) 2 Y , and the function g assigns
z = g(y) = g(f(x)) 2 Z. Thus using f and g an element of Z can be assigned
to x. This operation defines a function from X to Z and the result of this
operation is called the composition of f and g.

Definition 6.2. If f : X ! Y and g : Y ! Z, then h = g � f is a function
from X to Z such that 8x 2 X g(f(x)) = h(x).

.
Let us consider an example. Let f : R ! R such that f(x) = x + 1 and

g : R ! R such that g(x) = x2. Then (g�f) : R ! R and (g�f)(x) = (x+1)2 for
all x 2 R. Note that the order of f and g is important since (f � g)(x) = x2+1.
Thus composition is not commutative.

There are two special type functions.

• Let A ✓ X, then i : A ! X such that i(a) = a for all a 2 A is called
the inclusion function of A into X. Observe that (f � i) : A ! X and
(f � i) = f |A for any function f : X ! Y .

• Another important function is called the identity function. Let X be some
set. Then IX : X ! X is an identity function iff IX(x) = x.

Theorem 6.2. Let f : X ! Y , g : Y ! Z, and h : Z ! W . Then

• f � (g � h) = (f � g) � h.

• f � IX = f = IY � f .
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Proof. These results can be proven simply by evaluating the functions. For
example, both functions in the first equality assign h(g(f(x))) for any x 2 X
and so functions are equal.

Notice that this theorem states that we may write f �g�h without ambiguity.

6.5 The Image of a Function

Given a function f : X ! Y , it is not necessary that every element of Y is an
image of some x 2 X. For example, the function R ! R defined by the formula
x2 does not have �1 as a value.

Thus we may give the following definition.

Definition 6.3. The image of the function f is defined as follows

Imf = {y 2 Y : 9x 2 X f(x) = y} = {f(x) : x 2 X}

(in other words it is the projection of the graph D of f on the second coordinate:
Imf = {y : (x, y) 2 D}).

End of The Chapter Exercises

6.5 Find an image of the function f : Z ! Z such that f(x) = 3x.

6.6 Determine the following sets:

• {m 2 N : 9n 2 N m  n};
• {m 2 N : 8n 2 N m  n};
• {n 2 N : 9m 2 N m  n};
• {n 2 N : 8m 2 N m  n}.

6.7 Prove or disprove the following statements.

• 8m,n 2 N m  n.
• 9m,n 2 N m  n.
• 9m 2 N8n 2 N m  n.
• 8m 2 N9n 2 N m  n.
• 9n 2 N8m 2 N m  n.
• 8n 2 N9m 2 N m  n.
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