
Chapter 5

Sets

5.1 The Intuitive Definition of a Set
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Sets

A set is one of the two most important concepts
in mathematics. Many mathematical statements
involve “an integer n” or “a real number a”. Set
theory notation provides a simple way to express
that a is a real number. However, this language is
much more expressible and it is impossible to imag-
ine modern mathematics without this notation.

As in the previous chapter it is difficult to define
a set formally so we give a less formal definition
which should be enough to use the notation. A set
is a well-defined collection of objects. Important

examples of sets are:

1. R a set of reals,

2. Z the set of integers1,

3. N the set of natural numbers2,

4. Q a set of rational numbers,

5. C a set of complex numbers.

Usually, sets are denoted by single letter.
Objects in a set are called elements of the set and we denote the statement

“x is in the set E” by the formula x 2 E and the negation of this statement by

1
“Z” stands for the German word Zahlen (“numbers”).

2
Note that in the literature there are two diffirent traditions: in one 0 is a natural number,

in another it is not; in this book we are going to assume that 0 is not a natural number.
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x 62 E. For example, we proved that
p
2 62 Q3.

Exercise 5.1. Which of the following sets are included in which? Recall that
a number is prime iff it is an integer greater than 1 and divisible only by 1 and
itself.

1. The set of all positive integers less than 10.

2. The set of all prime numbers less than 11.

3. The set of all odd numbers greater than 1 and less than 6.

4. The set of all positive integers less than 10.

5. The set whose only elements are 1 and 2.

6. The set whose only element is 1.

7. The set of all prime numbers less than 11.

5.2 Basic Relations Between Sets

Many problems in mathematics are problems of determining whether two de-
scription of sets are describing the same set or not. For example, when we learn
how to solve quadratic equations of the form ax2 + bx + c = 0 (a, b, c 2 R) we
learn how to list the elements of the set

�
x 2 R : ax2 + bx+ c = 0

 
.

We say that two sets A and B are equal if they contain the same elements
(we denote it by A = B). If all the elements of A belong to B we say that A is
a subset of B and denote it by A ✓ B4.

For example, Q ✓ R since any rational number is also a real number. A
special set is an empty set i.e. the set that does not have elements, we denote
it ;.

5.2.1 Diagrams
If we think of a set A as represented by all the points within a circle or any
other closed figure, then it is easy to represent the notion of A being a subset
of another set B also represented by all the points within a circle. We just put
a circle labeled by A inside of the circle labeled by B. We can also diagram
an equality by drawing a circle labeled by both A and B. (see fig. 5.1). Such
diagrams are called Euler diagrams and it is clear that one may draw Euler
diagrams for more than two sets.

3
The symbol 2 was first used by Giuseppe Peano 1889 in his work “Arithmetices principia,

nova methodo exposita”. Here he wrote on page X: “The symbol 2 means is. So a 2 b is read

as a is a b; . . . ” The symbol itself is a stylized lowercase Greek letter epsilon (“✏”), the first

letter of the word esti, which means “is”.
4
In the literature there are three symbols for “subset”: ✓, (, and ✓. A ✓ B means that A

is a subset of B and we allow A = B and A ( B means that A is a subset of B and we forbid

A = B. However, there is a problem with the third symbol, some people use it as a synonym

of ✓ and some use it as a synonym of (. Due to this ambiguity we are going to avoid using

it in this book.
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Figure 5.1: Euler diagrams

5.2.2 Descriptions of Sets
Listing elements. There are several ways to construct a set, the simplest one
is just to list them. For example

1. {1, 2,⇡} is the set consisting of three elements 1, 2, and ⇡, and

2. {1, 2, 3, . . .} is the set of all positive integers i.e. it is the set N.

Conditional definitions. We may also describe a set using some constraint
e.g we may list all the even numbers using the following formula {n 2 Z : n is even}
(we read it as “the set of all integers n such that n is even”).

Using this we may also define the set of all integers from 1 to m, we denote
it [m]; i.e. [m] = {n 2 N : 0 < n  m}.

Constructive definitions. Another way to construct a set of all even num-
bers is to use the constructive definition of a set: {2k : k 2 Z}.

We may also describe a set of rational numbers using this description: Q =
{a/b : a 2 Z, b 2 N} (note that we may also use a mix of a conditional and
constructive definitions, Q = {a/b : a, b 2 Z, b 6= 0}).

Exercise 5.2. Describe a set of perfect squares using constructive type of defi-
nition.

5.2.3 Disjoint Sets
Two sets are disjoint iff they do not have common elements. We also say that
two sets are overlapping iff they are not disjoint i.e. they share an element.

More generally, A1, . . . , A` are pairwise disjoint iff Ai is disjoint with Aj for
all i 6= j 2 [`]

Exercise 5.3. Of the sets in Exercise 5.1, which are disjoint from which?
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Figure 5.2: Operations over the sets

5.3 Operations over Sets.

Another way to describe a set is to apply operation to other sets. Let A and B
be sets.

The first example of the operations on sets is the union operation. The union
of A and B is the set containing all the elements of A and all the elements of B
i.e. A [B = {x : x 2 A or x 2 B}5.

Another example of such an operation is intersection. The intersection of
A and B is the set of all the elements belonging to both A and B i.e A \ B =
{x : x 2 A and x 2 B}6.

The third operation we are going to discuss this lecture is set difference. If
A and B are some sets, then A \B = {x : x 2 A and x 62 B}.

The last operation is symmetric difference. If A and B are some sets, then
A�B = (A \B) [ (B \A). Note that alternatively A�B = (A [B) \ (A \B)

Exercise 5.4. Describe the set {n 2 N : n is even} \ {3n : n 2 N}.
5
Note that this definition is not correct since in the conditional definitions we have to

specify the set x belongs to and we cannot do this here.
6
You may notice that in the definition of the union we use disjunction and in the definition

of intersection we use conjunction. Actually this is a the reason the symbol of the conjunction

is similar to the symbol of intersection and the symbol of the disjunction is similar to the

symbol of union.
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Theorem 5.1. Let A, B, and C be some sets. Then we have the following
identities.

associativity: A [ (B [ C) = (A [B) [ C and A \ (B \ C) = (A \B) \ C.

commutativity: A [B = B [A and A \B = B \A.

distributivity: A[ (B \C) = (A[B)\ (A[C) and A\ (B [C) = (A\B)[
(A \ C).

Proof. One may prove these properties using the Euler diagrams. Alternatively
they can be proven by definitions. Let us prove only the first part of the dis-
tributivity, the rest is Exercise 5.5.

Our proof consists of two parts in the first part we prove that A[ (B\C) ✓
(A[B)\ (A[C). Suppose that x 2 A[ (B \C). Then x 2 A or x 2 (B \C).

• If x 2 A, then x 2 (A [B) and x 2 (A [ C) i.e. x 2 ((A [B) \ (A [ C)).

• If x 2 (B \ C), then x 2 B and x 2 C. Which implies that x 2 (A [ B)
and x 2 (A [ C). As a result, x 2 ((A [B) \ (A [ C)).

Exercise 5.5. Prove the rest of the equalities in Theorem 5.1.

Probably the most difficult concept connected to sets is the concept of a
power set. Let A be some set, then the set of all possible subsets of A is
denoted by 2A (sometimes this set is denoted by P(A)) and called the power
set of A. In other words 2A = {B : B ✓ A}.

Warning: Please do not forget about two extremal elements of the
power set 2A: the empty set and A itself.

For example if A = {1, 2, 3}, then

2A = {;, {1} , {2} , {3} , {1, 2} , {1, 3} , {2, 3} , {1, 2, 3}} .

5.4 The Well-ordering Principle

Using the set notation we may finally justify the proof of the statement that
2n > n for all positive integers n from the video about mathematical induction.
In order to do this let us first formulate the following theorem.

Theorem 5.2. Let A ✓ Z be a non-empty set. We say that b 2 Z is a lower
bound for the set A iff b  a for all a 2 A. Additionally, we say that the set A
is bounded if there is a lower bound for A.

Given this, if A is bounded, then there is a lower bound a 2 A for the set A
(we say that a is the minimum of the set A).



32 CHAPTER 5. SETS

Note that this theorem also states that any subset of natural numbers have
a minimum.

Recall that we wish to prove that 2n > n for all positive n. Assume that it
is not true, in this case the set A = {n 2 N : 2n < n} is non-empty. Denote by
n0 the minimum of the set A, n0 exists by Theorem 5.2. We may consider the
following two cases.

• If n0 = 1, then it leads to a contradiction since 2 = 21 > 1.

• Otherwise, note that 1  n0 � 1 < n0, hence, 2n0�1 > n0 � 1. So 2n0 >
2n0 � 2 � n0. Which is a contradiction with the definition of n0.

Finally, we prove Theorem 5.2.

Proof of Theorem 5.2. Let b be a lower bound for the set A. Assume that there
is no minimum of the set A. Let P (n) be the statement that n /2 A.

First, we are going to prove that P (n) is true for all n � b. The base case
is true since if b 2 A, then b is the minimum of A which contradicts to the
assumption that there is no minimum of A. The induction step is also clear,
by the induction hypothesis we know that P (b), . . . , P (k) are true, hence,
(k + 1) 2 A implies that k + 1 is the minimum of A.

Now we prove that A is empty. Assume the opposite i.e. assume that there
is x 2 A. Note that x � b since b is a lower bound of A. However, P (x) is true
which implies that x /2 A. Therefore the assumption was false and A is empty,
but this contradicts to the fact that A is non- empty.

End of The Chapter Exercises

5.6 Find the power sets of ;, {1}, {1, 2}, {1, 2, 3, 4}. How many elements in
each of this sets?

5.7 Prove that

• A ✓ B () A [B = B,
• A ✓ B () A \B = A.

5.8 Let A be a subset of a set U we call this set a universe. We say that the
set A = U \A is a complement of A in U . Show the following equalities

• A = A.
• A [B = A \B.
• A \B = A [B.

5.9 Let us define an intersection of more than two sets as follows. Let A1, . . . ,
An be some sets. Then

•
T1

i=1 Ai = A1 and
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•
Tk+1

i=1 Ai =
⇣Tk

i=1 Ai

⌘
\Ak+1.

Show that
Tn

i=1 {x 2 N : i  x  n} = {n} for all integers n > 0.

5.10 Let us define a union of more than two sets as follows. Let A1, . . . , An be
some sets. Then

•
S1

i=1 Ai = A1 and

•
Sk+1

i=1 Ai =
⇣Sk

i=1 Ai

⌘
[Ak+1.

Show that
Sn

i=1[i] = [n] for all integers n > 0.

5.11 Let ⌦ be some set and A1, . . . , An ✓ ⌦. Show that
Sn

i=1 Ai = {x 2 ⌦ : 9i 2 [n] x 2 Ai}.

5.12 Let A1, . . . , An be some sets. Show that
nS

i=1
(Ai \B) = (

Sn
i=1 Ai) \B.

5.13 Show that A�(B�C) = (A�B)�C.
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