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If you are reading this book, you probably have never studied proofs before.
So let me give you some advice: mathematical books are very different from
fiction, and even books in other sciences. Quite often you may see that some
steps are missing, and some steps are not really explained and just claimed as
obvious. The main reason behind this is to make the ideas of the proof more
visible and to allow grasping the essence of proofs quickly.

Since the steps are skipped, you cannot just read the book and believe that
you studied the topic; the best way to actually study the topic is to try to prove
every statement before you read the actual proof in the book. In addition to
this, I recommend trying to solve all the exercises in the book (you may find
exercises in the middle and at the end of every chapter).

Additionally, many topics in this book have a corresponding five-minute
video explaining the material of the chapter, it is useful to watch them before
you go into the topic.

Organization
Part 1 covers the basics of mathematics and provide the language we use in the
next parts. We start from the explanation of what a mathematical proof is (in
Chapter 1). Chapter 2 shows how to prove theorems indirectly using proof by
contradiction. Chapter 3 explains the most powerful method in our disposal,
proof by induction. Finally, Chapters 4-7 define several important objects such
as sets, functions, and relations.

Alexander Knop
San Diego, California, USA
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Part I

Introduction to Mathematical
Reasoning
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Chapter 1

Proofs

1.1 Direct Proofs

youtu.be/eJD0gGqveIE
What is a Mathematical Proof

We start the discussion of the proofs in mathemat-
ics from an example of a proof in “everyday” life.
Assume that we know that the following statements
are true.

1. If a salmon has fins and scales it is kosher,

2. if a salmon has scales it has fins,

3. any salmon has scales.

Using these facts we may conclude that any salmon
is kosher; indeed, any salmon has scales by the
third statement, hence, by the second statement

any salmon has fins, finally, by the first statement any salmon is kosher since it
has fins and scales.

One may notice that this explanation is a sequence of conclusions such that
each of them is true because the previous one is true. Mathematical proof is
also a sequence of statements such that every statement is true if the previous
statement is true. If P and Q are some statements and Q is always true when P
is true, then we say that P implies Q. We denote the statement that P implies
Q by P =⇒ Q.

In order to define the implication formally let us consider the following table.

P Q P =⇒ Q
T T T
T F F
F T T
F F T

Let P and Q be some statements. Then this table says that if P and Q are
both false, then P =⇒ Q is true etc.

3
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4 CHAPTER 1. PROOFS

Exercise 1.1. Let n be an integer.

1. Is it always true that “n2 is positive” implies “n is not equal to 0”?

2. Is it always true that “n2 − n− 2 is equal to 0” implies “n is equal to 2”?

youtu.be/nBjJi6aTk2M
What We Know and How to

Find a Proof

In the example we gave at the beginning of the
section we used some known facts. But what does
it mean to know something? In math we typically
say that we know a statement if we can prove it.
But in order to prove this statement we need to
know something again, which is a problem! In or-
der to solve it, mathematicians introduced the no-
tion of an axiom. An axiom is a statement that is
believed to be true and when we prove a statement
we prove it under the assumption that these axioms
are true1.

For example, we may consider axioms of in-
equalities for real numbers.

1. Let a, b ∈ R. Only one of the following is true:

• a < b,
• b < a, or
• a = b.

2. Let a, b, c ∈ R. Then a < b iff a + c < b + c (iff is an abbreviation for “if
and only if”).

3. Let a, b, c ∈ R. Then a < b iff ac < bc provided that c > 0 and a < b iff
ac > bc if c < 0.

4. Let a, b, c ∈ R. If a < b and b < c, then a < c.

Let us now try to prove something using these axioms, we prove that if a > 0,
then a2 > 0. Note that a > 0, hence, by the third axiom a2 > 0.

Similarly, we may prove that if a < 0, then a2 > 0. And combining these
two statements together we may prove that if a 6= 0, then a2 > 0.

Such a way of constructing proof is called direct proofs.

Exercise 1.2. Axiomatic system for a four-point geometry.
Undefined terms: point, line, is on.
Axioms:

• For every pair of distinct points x and y, there is a unique line ` such that
x is on l and y is on l.

• Given a line ` and a point x that is not on `, there is a unique line m such
that x is on m and no point on ` is also on m.

1Note that in different parts of math axioms may be different

https://youtu.be/nBjJi6aTk2M
https://youtu.be/nBjJi6aTk2M
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• There are exactly four points.

• It is impossible for three points to be on the same line.

Prove that there are at least two distinct lines.

Let n andm be some integers. Using direct proofs we may prove the following
two statements.

• if n is even, then nm is also even2,

• if n is even and m is even, then n+m is also even.

We start from proving the first statement. There is an integer k such that
n = 2k since n is even. As a result, nm = 2(nk) so nm is even.

Now we prove the second statement. Since n and m are even there are k
and ` such that n = 2k and m = 2`. Hence, n+m = 2(k+ `) so n+m is even.

1.2 Constructing Proofs Backwards

However, sometimes it is not easy to find the proof. In this case one of the
possible methods to deal with this problem is to try to prove starting from the
end.

For example, we may consider the statement (a+b)2 = a2+2ba+b2. Imagine,
for a second, that you have not learned about axioms. In this case you would
write something like this:

(a+ b)2 = (a+ b) · (a+ b) =

a(a+ b) + b(a+ b) =

a2 + ab+ ba+ b2 = a2 + 2ba+ b2.

Let us try to prove it completely formally using the following axioms.

1. Let a, b, and c be reals. If a = b and b = c, then a = c.

2. Let a, b, and c be reals. If a = b, then a+ c = b+ c and c+ a = c+ b.

3. Let a, b, and c be reals. Then a(b+ c) = ab+ ac.

4. Let a and b be reals. Then ab = ba.

5. Let a and b be reals. Then a+ b = b+ a.

6. Let a be a real number. Then a2 = a · a and a · a = a2.

7. Let a be a real number. Then a+ a = 2a.
2A number n is even if there is an integer k such that n = 2k.
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So the formal proof of the statement (a + b)2 = a2 + 2ab + b2 is as follows.
First note that (a + b)2 = (a + b) · (a + b) (by axiom 6), hence, by axiom 1,
it is enough to show that (a + b) · (a + b) = a2 + 2ab + b2. By axiom 3,
(a+b) ·(a+b) = (a+b) ·a+(a+b) ·b. Axiom 4 implies that (a+b) ·a = a ·(a+b)
and (a+ b) · b = b · (a+ b) Hence, by axioms 1 and 2 applied twice

a · (a+ b) + b · (a+ b) = (a+ b) · a+ b · (a+ b) = (a+ b) · a+ (a+ b) · b.

As a result,

(a+b)·(a+b) = (a+b)·a+(a+b)·b = a·(a+b)+b·(a+b) = a·a+a·b+b·a+b·b;

so by axiom 1, it is enough to show that a · a+ a · b+ b · a+ b · b = a2 + 2ab+ b2.
Additionally, by axiom 6, a · a = a2 and b · b = b2. Hence, by axiom 2, it is
enough to show that a2 +a ·b+b ·a+b2 = a2 +2ab+b2. By axiom 4, a ·b = b ·a,
hence, by axiom 2, a·b+b·a = b·a+b·a. Therefore by axiom 7, a·b+b·a = 2b·a.
Finally, by axiom 2, a · b + b · a + a2 + b2 = 2b · a + a2 + b2 and by axiom 5,
a · b+ b · a+ a2 + b2 = a2 + a · b+ b · a+ b2 and 2b · a+ a2 + b2 = a2 + 2b · a+ b2.
Which finishes the proof by axiom 1.

1.3 Analysis of Simple Algorithms
We can use this knowledge to analyze simple algorithms. For example, let us
consider the following algorithm. Let us prove that it is correct i.e. it returns

Algorithm 1 The algorithm that finds the maximum element of a, b, c.
1: function Max(a, b, c)
2: r ← a
3: if b > r then
4: r ← b
5: end if
6: if c > r then
7: r ← c
8: end if
9: return r

10: end function

the maximum of a, b, and c. We need to consider the following cases.

• If the maximum is equal to a. In this case, at line 2, we set r = a, at line 3
the inequality b > r is false (since a = r is the maximum) and at line 6
the inequality c > r is also false (since a = r is the maximum). Hence, we
do not change the value of r after line 2 and the returned value is a.

• If the maximum is equal to b. We set r = a at line 2. The inequality b > r
at line 3 is true (since b is the maximum) and we set r to be equal to b.
So at line 6, the inequality c > r is false (since b = r is the maximum).
Hence, the returned value is b.
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• If the maximum is equal to c. We set r = a at line 2. If the inequality
b > r is true at line 3 we set r to be equal to b. So at line 6 the inequality
c > r is true (since c is the maximum). Hence, we set r being equal to c
and the returned value is c.

1.4 Proofs in Real-life Mathematics
In this chapter we explicitly used axioms to prove statements. However, it leads
us to really long and hard to understand proofs (the last example in the previous
section is a good example of this phenomenon). Because of this mathematicians
tend to skip steps in the proofs when they believe that they are clear. This is
the reason why it is arduous to read mathematical texts and it is very different
from reading non-mathematical books. A problem that arises because of this
tendency is that some mistakes may happen if we skip way too many steps.
In the last two centuries there were several attempts to solve this issue, one
approach to this we are going to discuss in the second part of this book.

End of The Chapter Exercises
1.3 Using the axioms of inequalities show that if a is a non-zero real number,

then a2 > 0.

1.4 Using the axioms of inequalities prove that for all real numbers a, b, and
c,

bc+ ac+ ab ≤ a2 + b2 + c2.

1.5 Prove that for all integers a, b, and c, If a divides b and b divides c, then
a divides c. Recall that an integer m divides an integer n if there is an
integer k such that mk = n.

1.6 Show that square of an even integer is even.

1.7 Prove that 0 divides an integer a iff a = 0.

1.8 Using the axioms of inequalities, show that if a > 0, b, and c are real
numbers, then b ≥ c implies that ab ≥ ac.

1.9 Using the axioms of inequalities, show that if a, b < 0 are real numbers,
then a ≤ b implies that a2 ≥ b2.
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Chapter 2

Proofs by Contradiction

2.1 Proving Negative Statements

youtu.be/bWP0VYx75DI
Proofs by Contradiction

The direct method is not very convenient when we
need to prove a negation of some statement.

For example, we may try to prove that 78n +
102m = 11 does not have integer solutions. It is not
clear how to prove it directly since we can not con-
sider all possible n and m. Hence, we need another
approach. Let us assume that such a solution n,m
exists. Note that 78n+102m is even, but 11 is odd.
In other words, an odd number is equal to an even
number, it is impossible. Thus, the assumption was
false.

Let us consider a more useful example, let us prove that if p2 is even, then
p is also even (p is an integer). Assume the opposite i.e. that p2 is even but p
is not. Let p = 2b+ 11. Note that p2 = (2b+ 1)2 = 2(2b2 + 2b) + 1. Hence, p2

is odd which contradicts to the assumption that p2 is even.

Using this idea we may prove much more complicated results e.g. one may
show that

√
2 is irrational. For the sake of contradiction, let us assume that it

is not true. In other words there are p and q such that
√

2 = p
q and p

q is an
irreducible fraction.

Note that
√

2q = p, so 2q2 = p2. Which implies that p is even and 4 divides
p2. Therefore 4 divides 2q2 and q is also even. As a result, we get a contradiction
with the assumption that p

q is an irreducible fraction.

1Note that we use here the statement that an integer n is not even iff it is odd, which,
formally speaking, should be proven.

9
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Template for proving a statement by contradiction.

Assume, for the sake of contradiction, that the statement is false. Then
present some argument that leads to a contradiction. Hence, the as-
sumption is false and the statement is true.

Exercise 2.1. Show that
√

3 is irrational.

2.2 Proving Implications by Contradiction
This method works especially well when we need to prove an implication. Since
the implication A =⇒ B is false only when A is true but B is false. Hence,
you need to derive a contradiction from the fact that A is true and B is false.

We have already seen such examples in the previous section, we proved that
p2 is even implies p is even for any integer p. Let us consider another example.
Let a and b be reals such that a > b. We need to show that (ac < bc) =⇒ c < 0.
So we may assume that ac < bc but c ≥ 0. By the multiplicativity of the
inequalities we know that if (a > b) and c > 0, then ac > bc which contradicts
to ac < bc.

A special case of such a proof is when we need to prove the implication
A =⇒ B, assume that B is false and derive that A is false which contradicts
to A (such proofs are called proofs by contraposition); note that the previous
proof is a proof of this form.

2.3 Proof of “OR” Statements
Another important case is when we need to prove that at least one of two
statements is true. For example, let us prove that ab = 0 iff a = 0 or b = 0. We
start from the implication from the right to the left. Since if a = 0, then ab = 0
and the same is true for b = 0 this implication is obvious.

The second part of the proof is the proof by contradiction. Assume ab = 0,
a 6= 0, and b 6= 0. Note that b = ab

a = 0, hence b = 0 which is a contradiction to
the assumption.

End of The Chapter Exercises
2.2 Prove that if n2 is odd, then n is odd.

2.3 In Euclidean (standard) geometry, prove: If two lines share a common
perpendicular, then the lines are parallel.

2.4 Let us consider four-lines geometry, it is a theory with undefined terms:
point, line, is on, and axioms:

1. there exist exactly four lines,
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2. any two distinct lines have exactly one point on both of them, and

3. each point is on exactly two lines.

Show that every line has exactly three points on it.

2.5 Let us consider group theory, it is a theory with undefined terms: group-
element and times (if a and b are group elements, we denote a times b by
a · b), and axioms:

1. (a · b) · c = a · (b · c) for every group-elements a, b, and c;

2. there is a unique group-element e such that e · a = a = a · e for
every group-element a (we say that such an element is the identity
element);

3. for every group-element a there is a group-element b such that a·b = e,
where e is the identity element;

4. for every group-element a there is a group-element b such that b·a = e,
where e is the identity element.

Let e be the identity element. Show the following statements

• if b0 · a = b1 · a = e, then b0 = b1, for every group-elements a, b0, and
b1.

• if a · b0 = a · b1 = e, then b0 = b1, for every group-elements a, b0, and
b1.

• if a · b0 = b1 · a = e, then b0 = b1, for every group-elements a, b0, and
b1.

2.6 Let us consider three-points geometry, it is a theory with undefined terms:
point, line, is on, and axioms:

1. There exist exactly three points.

2. Two distinct points are on exactly one line.

3. Not all the three points are collinear i.e. they do not lay on the same
line.

4. Two distinct lines are on at least one point i.e. there is at least one
point such that it is on both lines.

Show that there are exactly three lines.

2.7 Show that there are irrational numbers a and b such that ab is rational.

2.8 Show that there does not exist the largest integer.
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Chapter 3

Proofs by Induction

3.1 Simple Induction

youtu.be/jOnZTWGpX_I
The Induction Principle

Let us consider a simple problem: what is bigger
2n or n? In this chapter, we are going to study the
simplest way to prove that 2n > n for all positive
integers n. First, let us check that it is true for
small integers n.

n 1 2 3 4 5 6 7 8
2n 2 4 8 16 32 64 128 256

We may also note that 2n is growing faster than n,
so we expect that if 2n > n for small integers n,
then it is true for all positive integers n.

In order to prove this statement formally, we use the following principle.

Principle 3.1 (The Induction Principle). Let P (n) be some statement about a
positive integer n. Hence, P (n) is true for every positive integer n iff

base case: P (1) is true and

induction step: P (k) =⇒ P (k + 1) is true for all positive integers k.

Let us prove now the statement using this principle. We define P (n) be the
statement that “2n > n”. P (1) is true since 21 > 1. Let us assume now that
2n > n. Note that 2n+1 = 2 · 2n > 2n ≥ n+ 1. Hence, we proved the induction
step.

Exercise 3.1. Prove that (1 + x)n ≥ 1 + nx for all positive integers n and real
numbers x ≥ −1.

13
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3.2 Changing the Base Case
Let us consider functions n2 and 2n.

n 1 2 3 4 5 6 7 8
n2 1 4 9 16 25 36 49 64
2n 2 4 8 16 32 64 128 256

Note that 2n is greater than n2 starting from 5. But without some trick we can
not prove this using induction since for n = 3 it is not true!

The trick is to use the statement P (n) stating that (n + 4)2 < 2n+4. The
base case when n = 1 is true. Let us now prove the induction step. Assume
that P (k) is true i.e. (k + 4)2 < 2k+4. Note that 2(k + 4)2 < 2k+1+4 but
(k + 5)2 = k2 + 10k + 25 ≤ 2k2 + 16k + 32 = 2(k + 4)2. Which implies that
2k+1+4 > (k + 5)2. So P (k + 1) is also true.

In order to avoid this strange +4 we may change the base case and use the
following argument.

Theorem 3.1. Let P (n) be some statement about an integer n. Hence, P (n)
is true for every integer n > n0 iff

base case: P (n0 + 1) is true and

induction step: P (k) =⇒ P (k + 1) is true for all integers k > n0.

Using this generalized induction principle we may prove that 2n ≥ n2 for
n ≥ 4. The base case for n = 4 is true. The induction step is also true;
indeed let P (k) be true i.e. (k + 4)2 < 2k+4. Hence, 2(k + 4)2 < 2k+1+4 but
(k + 5)2 = k2 + 10k + 25 ≤ 2k2 + 16k + 32 = 2(k + 4)2.

Let us now prove the theorem. Note that the proof is based on an idea
similar to the trick with +4, we just used.

Proof of Theorem 3.1. ⇒ If P (n) is true for any n > n0 it is also true for
n = n0 + 1 which implies the base case. Additionally, it true for n = k+ 1
so the induction step is also true.

⇐ In this direction the proof is a bit harder. Let us consider a statement Q(n)
saying that P (n + n0) is true. Note that by the base case for P , Q(1) is
true; by the induction step for P we know that Q(n) implies P (n+ 1). As
a result, by the induction principle Q(n) is true for all positive integers n.
Which implies that P (n) is true for all integers n > n0.

3.3 Inductive Definitions
We may also define objects inductively. Let us consider the sum 1 + 2 + · · ·+ n
a line of dots indicating “and so on” which indicates the definition by induction.
In this case, a more precise notation is

∑n
i=1 i.
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Definition 3.1. Let a(1), . . . , a(n), . . . be a sequence of integers. Then
∑n
i=1 a(i)

is defined inductively by the following statements:

•
∑1
i=1 a(i) = a(1), and

•
∑k+1
i=1 a(i) =

∑k
i=1 a(i) + a(k + 1).

Let us prove that
∑n
i=1 i = n(n+1)

2 . Note that by definition
∑1
i=1 i = 1 and

1(1+1)
2 = 1; hence, the base case holds. Assume that

∑n
i=1 i = n(n+1)

2 . Note that∑n+1
i=1 i =

∑n
i=1 i + (n + 1) and by the induction hypothesis

∑n
i=1 i = n(n+1)

2 .
Hence,

∑n+1
i=1 i = n(n+1)

2 + (n+ 1) = (n+1)(n+2)
2 .

Exercise 3.2. Prove that
∑n
i=1 2i = 2n+1 − 2.

3.4 Analysis of Algorithms with Cycles
Induction is very useful for analysing algorithms using cycles. Let us extend the
example we considered in Section 1.3 on page 6.

Let us consider the following algorithm. We prove that it is working correctly.

Algorithm 2 The algorithm that finds the maximum element of a1, . . . , an.
1: function Max(a1, . . . , an)
2: r ← a1

3: for i from 2 to n do
4: if ai > r then
5: r ← ai
6: end if
7: end for
8: return r
9: end function

First, we need to define r1, . . . , rn the value of r during the execution of the

algorithm. It is easy to see that r1 = a1 and ri+1 =

{
ri if ri > ai+1

ai+1 otherwise
.

Secondly, we prove by induction that ri is the maximum of a1, . . . , ai. It is
clear that the base case for i = 1 is true. Let us prove the induction step from
k to k + 1. By the induction hypothesis, rk is the maximum of a1, . . . , ak. We
may consider two following cases.

• If rk > ak+1, then rk+1 = rk is the maximum of a1, . . . , ak+1 since rk is
the maximum of a1, . . . , ak.

• Otherwise, ak+1 is greater than or equal to a1, . . . , ak, hence, rk+1 = ak+1.

Exercise 3.3. Show that line 6 in the following sorting algorithm executes
n(n+1)

2 times.
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Algorithm 3 The algorithm is selection sort, it sorts a1, . . . , an.
1: function SelectionSort(a1, . . . , an)
2: for i from 1 to n do
3: r ← ai
4: `← i
5: for j from i to n do
6: if aj > r then
7: r ← aj
8: `← j
9: end if

10: end for
11: Swap ai and a`.
12: end for
13: end function

3.5 Strong Induction

Sometimes P (k) is not enough to prove P (k+1) and we need all the statements
P (1), . . . , P (k). In this case we may use the following induction principle.

Theorem 3.2 (The Strong Induction Principle). Let P (n) be some statement
about positive integer n. Hence, P (n) is true for every integer n > n0 iff

base case: P (n0 + 1) is true and

induction step: If P (n0 + 1), . . . , P (n0 + k) are true, then P (n0 + k + 1) is
also true for all positive integers k.

Before we prove this theorem let us prove some properties of Fibonacci num-
bers using this theorem. The Fibonacci numbers are defined as follows: f0 = 0,
f1 = 1, and fk = fk−1 + fk−2 for k ≥ 2 (note that they are also defined using
strong induction since we use not only fk−1 to define fk).

Theorem 3.3 (The Binet formula). The Fibonacci numbers are given by the
following formula

fn =
αn − βn√

5
,

where α = 1+
√

5
2 and β = 1−

√
5

2 .

Proof. We use the strong induction principle to prove this statement with n0 =

−1. Let us first prove the base case, (α0−β0)√
5

= 0 = f0. We also need to prove
the induction step.

• If k = 1, then (α1−β1)√
5

= 1 = f1.
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• Otherwise, by the induction hypothesis, fk = αk−βk

√
5

and fk−1 = αk−1−βk−1

√
5

.
By the definition of the Fibonacci numbers fk+1 = fk + fk−1. Hence,

fk+1 =
αk − βk√

5
+
αk−1 − βk−1

√
5

.

Note that it is enough to show that

αk+1 − βk+1

√
5

=
αk − βk√

5
+
αk−1 − βk−1

√
5

. (3.1)

Note that it is the same as

αk+1 − αk − αk−1

√
5

=
βk+1 − βk − βk−1

√
5

.

Additionally, note that α and β are roots of the equation x2 − x− 1 = 0.
Hence, αk+1−αk−αk−1 = αk−1(α2−α−1) = 0 and βk+1−βk−βk−1 =
βk−1(β2 − β − 1) = 0. Which implies equality (3.1).

Now we are ready to prove the strong induction principle.

Proof of Theorem 3.2. It is easy to see that if P (n) is true for all n > n0, then
the base case and the induction steps are true. Let us prove that if the base
case and the induction step are true, then P (n) is true for all n > n0.

Let Q(k) be the statement that P (n0 + 1), . . . , P (n0 + k) are true. Note
that Q(1) is true by the base case for P . Additionally, note that if Q(k) is true,
then Q(k+ 1) is also true, by the induction step for P . Hence, by the induction
principle, Q(k) is true for all positive integers k. Which implies that P (n0 + k)
is true for all positive integers k.

3.6 Recursive Definitions

Sometimes you wish to define objects using objects of the same form like in the
case of inductive definitions but you do not know how to enumerate them using
an integer parameter.

One example of such a situation is the definition of an arithmetic formula.

base case: xi is an arithmetic formula on the variables x1, . . . , xn for all i; if
c is a real number, then c is also an arithmetic formula on the variables
x1, . . . , xn.

recursion step: If P and Q are arithmetic formulas on the variables x1, . . . ,
xn, then (P + Q) and P · Q are arithmetic formulas on the variables x1,
. . . , xn.
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Note that this definition implicitly states that any other expressions are not
arithmetic formulas.

We can define recursively the value of such a formula. Let v1, . . . , vn be
some integers.

base cases: xi
∣∣
x1=v1,...,xn=vn

= vi; in other words, the value of the arithmetic
formula xi is equal to vi when x1 = v1, . . . , xn = vn; if c is a real number,
then c|x1=v1,...,xn=vn = c.

recursion steps: If P and Q are arithmetic formulas on the variables x1, . . . ,
xn, then

(P +Q)
∣∣
x1=v1,...,xn=vn

= P
∣∣
x1=v1,...,xn=vn

+Q
∣∣
x1=v1,...,xn=vn

and

(P ·Q)
∣∣
x1=v1,...,xn=vn

= P
∣∣
x1=v1,...,xn=vn

·Q
∣∣
x1=v1,...,xn=vn

.

For example, ((x1 +x2) ·x3) is clearly an arithmetic formula on the variables
x1, . . . , xn. One may expect the value of this formula with x1 = 1, x2 = 0, and
x3 = −1 be equal to −1, let us check:

• Note that
x1

∣∣
x1=1,x2=0,x3=−1

= 1,

x2

∣∣
x1=1,x2=0,x3=−1

= 0, and
x3

∣∣
x1=1,x2=0,x3=−1

= −1.

• Hence,
(x1 + x2)

∣∣
x1=1,x2=0,x3=−1

= 1 + 0 = 1.

• Finally,
((x1 + x2) · x3)

∣∣
x1=1,x2=0,x3=−1

= 1 · −1 = −1.

A special case of induction which called structural induction is the easiest
way to prove properties of recursively defined objects. The idea of this is similar
to the idea of strong induction:

• first, we prove the statement for the base case,

• after that we prove the induction step, using the assumption that the
statement is true for all the substructures (e.g. subformulas in the previous
definition).

To illustrate this method, we prove the following theorem.

Theorem 3.4. For any arithmetic formula A on x, there is a polynomial p
such that p(v) = A

∣∣
x=v

for any real value v.
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Proof. base cases: If A = xi, then consider the polynomial p(x) = x; it is
easy to see that A

∣∣
x=v

= v = p(v). If A = c where c is a real number,
then consider the constant polynomial p(x) = c; it is easy to note that
A
∣∣
x=v

= c = p(v).

induction step: We need to consider two cases. Consider the case when A =
B1+B2. By the induction hypothesis, there are polynomials q1 and q2 such
that B1

∣∣
x=v

= q1(v) and B2

∣∣
x=v

= q2(v) for all real numbers v. We define
p(x) = q1(x) + q2(x) (it is a polynomial since sum of two polynomials is a
polynomial). It is obvious that A

∣∣
x=v

= B1

∣∣
x=v

+B2

∣∣
x=v

= q1(v)+q2(v) =
p(v).
Another case is A = B1 · B2. Again, by the induction hypothesis, there
are polynomials q1 and q2 such that B1

∣∣
x=v

= q1(v) and B2

∣∣
x=v

= q2(v)
for all real numbers v. We define p(x) = q1(x) · q2(x) (it is a polynomial
since product of two polynomials is a polynomial). It is obvious that
A
∣∣
x=v

= B1

∣∣
x=v
·B2

∣∣
x=v

= q1(v) · q2(v) = p(v).

Exercise 3.4. • Define arithmetic formulas with division and define their
value (make sure that you handled divisions by 0).

• Show that for any arithmetic formula with division A on x, there are
polynomials p and q such that p(v)

q(v) = A
∣∣
x=v

or A
∣∣
x=v

is not defined for
any real value v.

3.7 Analysis of Recursive Algorithms
To illustrate the power of recursive definitions and strong induction, let us an-
alyze Algorithm 4. We prove that number of comparisons of this algorithm
is bounded by 6 + 2 log2(n). First step of the proof is to denote the worst
number of comparisons when we run the algorithm on the list of length n
by C(n). It is easy to see that C(n) = n for n ≤ 5. Additionally, C(n) ≤
1 + max(C(

⌊
n
2

⌋
), C(n −

⌊
n
2

⌋
)) for n > 5. As we mentioned we prove that

C(n) ≤ 6 + 2 log2(n), we prove it by induction. The base case is clear; let us
now prove the induction step. By the induction hypothesis,

C(
⌊n

2

⌋
) ≤ 6 + 2 log2(

⌊n
2

⌋
)

and
C(n−

⌊n
2

⌋
) ≤ 6 + 2 log2(n−

⌊n
2

⌋
).

Since
⌊
n
2

⌋
≤ n

2 and n−
⌊
n
2

⌋
≤ n

2 + 1, C(n) ≤ 1 + 2 log2(n2 + 1). However,

1 + 6 + 2 log2

(n
2

+ 1
)
≤ 6 + 2 log2

(
n√
2

+
√

2

)
≤ 6 + 2 log2(n)

for n ≥ 5. As a result, we proved the induction step.
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Algorithm 4 The binary search algorithm that finds an element e in the sorted
list a1, . . . , an.
1: function BinarySearch(e, a1, . . . , an)
2: if n ≤ 5 then
3: for i from 1 to n do
4: if ai = e then
5: return i
6: end if
7: end for
8: else
9: `←

⌊
n
2

⌋
10: if a` ≤ e then
11: BinarySearch(e, a1, . . . , a`)
12: else
13: BinarySearch(e, a`+1, . . . , an)
14: end if
15: end if
16: end function

End of The Chapter Exercises
3.5 Show that there does not exist the largest integer.

3.6 Show that for any positive integer n, n2 + n is even.

3.7 Show that for any positive integer n, 3 divises n3 + 2n.

3.8 Show that for any integer n ≥ 10, n3 ≤ 2n.

3.9 Show that for any positive integer n,
∑n
i=0 x

i = 1−xn+1

1−x .

3.10 Show that for any matrix A ∈ Rm×n (n > m) there is a nonzero vector
x ∈ Rn such that Ax = 0.

3.11 Show that all the elements of {0, 1}n (Binary strings) may be ordered
such that every successive strings in this order are different only in one
character. (For example, for n = 2 the order may be 00, 01, 11, 10.)

3.12 Let a0 = 2, a1 = 5, and an = 5an−1 − 6an−2 for all integers n ≥ 2. Show
that an = 3n + 2n for all integers n ≥ 0.

3.13 Show that
∑n
i=1 i

2 = n(n+1)(2n+1)
6 for all integers n ≥ 1.

3.14 Show that
n∑
i=1

1
i(i+1) = n

n+1 for all integers n ≥ 1.

3.15 Show that
n∑
i=1

1
i2 ≤ 2− 1

n for all integers n ≥ 1.
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3.16 Show that
∑n
i=1(2i− 1) = n2 for any positive integer n.

3.17 Prove that
∑n
i=1

1
i(i+1) = n

n+1 for any positive integer n.

3.18 Prove that
n∑
i=2

(i+ 1)2i = n2n+1 for all integers n > 2.

3.19 Let a1, . . . , an be a sequence of real numbers. We define inductively∏n
i=k ai as follows:

•
∏1
i=1 ai = a1 and

•
∏k+1
i=1 ai =

(∏k
i=1 ai

)
· ak+1.

Prove that
∏n−1
i=1

(
1− 1

(i+1)2

)
= n+1

2n for all integers n > 1.

3.20 Let f0 = 1, f1 = 1, and fn+2 = fn+1 + fn for all integers n ≥ 0. Show
that fn ≥

(
3
2

)n−2.

3.21 Show that fn+m = fn−1fm−1 + fnfm.

3.22 Show that two arithmetic formulas (x1 + x2) · x3 and x1 · x3 + x2 · x3 on
the variables x1, x2, and x3 have the same values.

3.23 We say that L is a list of powers of x iff

• either L = xk for some positive integer k or

• L = (xk, L′) where L′ is a list of powers of x and k is a positive
integer.

Let L be a list of powers of x. We say that the sum of L with x = v
denoted by

∑
L
∣∣
x=v

• is equal to xk whether L = xk and

• is equal to xk +
∑
L′
∣∣
x=v

whether L = (xk, L′).

Prove that for any list L of powers of x there is a polynomial such that∑
L
∣∣
x=v

= p(v) for all real numbers v.

3.24 Let us define n! as follows: 1! = 1 and n! = (n−1)! ·n. Show that n! ≥ 2n

for any n ≥ 4.

3.25 Show that
+∞∫
0

xne−x dx = n! for all n ≥ 0.

3.26 Prove that
n∑
i=1

(i+ 1)2i = n2n+1 for all integers n ≥ 1.

3.27 Show that
∑n
k=1 k · k! = (n+ 1)!− 1.



22 CHAPTER 3. PROOFS BY INDUCTION



Chapter 4

Predicates and Connectives

4.1 Propositions and Predicates

youtu.be/0unvlq2OTaE
Connectives and Propositions

In the previous chapters we used the word “state-
ment” without any even relatively formal definition
of what it means. In this chapter we are going to
give a semi-formal definition and discuss how to
create complicated statements from simple state-
ments.

It is difficult to give a formal definition of what
a mathematical statement is, hence, we are not go-
ing to do it in this book. The goal of this section
is to enable the reader to recognize mathematical
statements.

A proposition or a mathematical statement is a declarative sentence which
is either true or false but not both. Consider the following list of sentences.

1. 2× 2 = 4

2. π = 4

3. n is even

4. 32 is special

5. The square of any odd number is odd.

6. The sum of any even number and one is prime.

Of those, the first two are propositions; note that this says nothing about
whether they are true or not. Actually, the first is true and the second is false.
However, the third sentence becomes a proposition only when the value of n is
fixed. The fourth is not a proposition. Finally, the last two are propositions
(the fifth is true and the sixth is false).

23
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The third statement is somewhat special, because there is a simple way to
make it a proposition: one just needs to fix the value of the variables. Such
sentences are called predicates and the variables that need to be specified are
called free variables of these predicates.

Note that the fourth sentence is also interesting, since if we define what it
means to be special, the phrase became a proposition. Mathematicians tend to
do such things to give mathematical meanings to everyday words.

4.2 Connectives
Mathematicians often need to decide whether a given proposition is true or
false. Many statements are complicated and constructed from simpler state-
ments using logical connectives. For example we may consider the following
statements:

1. 3 > 4 and 1 < 1;

2. 1× 2 = 5 or 6 > 1.

Logical connective “OR”. The second statement is an example of usage of
this connective. The statement “P or Q” is true if and only if at least one of P
and Q is true. We may define the connective using the truth table of it.

P Q P or Q
T T T
T F T
F T T
F F F

The or connective is also called disjunction and the disjunction of P and Q
is often dented as P ∨Q.

Warning: Note that in everyday speech “or” is often used in the
exclusive case, like in the sentence “we need to decide whether it is an
insect or a spider”. In this case the precise meaning of “or” is made clear
by the context. However, mathematical language should be formal,
hence, we always use “or” inclusively.

Logical connective “AND”. The first statement is an example of this con-
nective. The statement “P and Q” is true if and only if both P and Q are true.
We may define the connective using the truth table of it.

P Q P and Q
T T T
T F F
F T F
F F F
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The or connective is also called conjunction and the conjunction of P and
Q is often dented as P ∧Q.

Warning: Not all the properties of “and” from everyday speach are
captured by logical conjunction. For example, “and” sometimes implies
order. For example, “They got married and had a child” in common
language means that the marriage came before the child. The word
“and” can also imply a partition of a thing into parts, as “The American
flag is red, white, and blue.” Here it is not meant that the flag is at
once red, white, and blue, but rather that it has a part of each color.

Logical connective “NOT”. The last connective is called negation and ex-
amples of usage of it are the following:

1. 5 is not greater than 8;

2. Does not exist an integer n such that n2 = 2.

Note that it is not straightforward where to put the negation in these sen-
tences.

The negation of a statement P is denoted as ¬P (sometimes it is also denoted
as ∼ P ).

End of The Chapter Exercises
4.1 Construct truth tables for the statements

• not (P and Q);

• (not P ) or (not Q);

• P and (not Q);

• (not P ) or Q;

4.2 Consider the statement “All gnomes like cookies”. Which of the following
statements is the negation of the above statement?

• All gnomes hate cookies.

• All gnomes do not like cookies.

• Some gnome do not like cookies.

• Some gnome hate cookies.

• All creatures who like cookies are gnomes.

• All creatures who do not like cookies are not gnomes.

4.3 Using truth tables show that the following statements are equivalent:

• P =⇒ Q,
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• (P∨Q) ⇐⇒ Q (A ⇐⇒ B is the same as (A =⇒ B)∧(B =⇒ A)),

• (P ∧Q) ⇐⇒ P

4.4 Prove that three connectives “or”, “and”, and “not” can all be written in
terms of the single connective “notand” where “P notand Q” is interpreted
as “not (P and Q)” (this operation is also known as Sheffer stroke or
NAND).

4.5 Show the same statement about the connective “notor” where “P notor Q”
is interpreted as “not (P or Q)” (this operation is also known as Peirce’s
arrow or NOR).



Chapter 5

Sets

5.1 The Intuitive Definition of a Set

youtu.be/bshBV2H4Sqo
Sets

A set is one of the two most important concepts
in mathematics. Many mathematical statements
involve “an integer n” or “a real number a”. Set
theory notation provides a simple way to express
that a is a real number. However, this language is
much more expressible and it is impossible to imag-
ine modern mathematics without this notation.

As in the previous chapter it is difficult to define
a set formally so we give a less formal definition
which should be enough to use the notation. A set
is a well-defined collection of objects. Important

examples of sets are:

1. R a set of reals,

2. Z the set of integers1,

3. N the set of natural numbers2,

4. Q a set of rational numbers,

5. C a set of complex numbers.

Usually, sets are denoted by single letter.
Objects in a set are called elements of the set and we denote the statement

“x is in the set E” by the formula x ∈ E and the negation of this statement by

1“Z” stands for the German word Zahlen (“numbers”).
2Note that in the literature there are two diffirent traditions: in one 0 is a natural number,

in another it is not; in this book we are going to assume that 0 is not a natural number.

27
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x 6∈ E. For example, we proved that
√

2 6∈ Q3.

Exercise 5.1. Which of the following sets are included in which? Recall that
a number is prime iff it is an integer greater than 1 and divisible only by 1 and
itself.

1. The set of all positive integers less than 10.

2. The set of all prime numbers less than 11.

3. The set of all odd numbers greater than 1 and less than 6.

4. The set of all positive integers less than 10.

5. The set whose only elements are 1 and 2.

6. The set whose only element is 1.

7. The set of all prime numbers less than 11.

5.2 Basic Relations Between Sets
Many problems in mathematics are problems of determining whether two de-
scription of sets are describing the same set or not. For example, when we learn
how to solve quadratic equations of the form ax2 + bx + c = 0 (a, b, c ∈ R) we
learn how to list the elements of the set

{
x ∈ R : ax2 + bx+ c = 0

}
.

We say that two sets A and B are equal if they contain the same elements
(we denote it by A = B). If all the elements of A belong to B we say that A is
a subset of B and denote it by A ⊆ B4.

For example, Q ⊆ R since any rational number is also a real number. A
special set is an empty set i.e. the set that does not have elements, we denote
it ∅.

5.2.1 Diagrams
If we think of a set A as represented by all the points within a circle or any
other closed figure, then it is easy to represent the notion of A being a subset
of another set B also represented by all the points within a circle. We just put
a circle labeled by A inside of the circle labeled by B. We can also diagram
an equality by drawing a circle labeled by both A and B. (see fig. 5.1). Such
diagrams are called Euler diagrams and it is clear that one may draw Euler
diagrams for more than two sets.

3The symbol ∈ was first used by Giuseppe Peano 1889 in his work “Arithmetices principia,
nova methodo exposita”. Here he wrote on page X: “The symbol ∈ means is. So a ∈ b is read
as a is a b; . . . ” The symbol itself is a stylized lowercase Greek letter epsilon (“ε”), the first
letter of the word εστι, which means “is”.

4In the literature there are three symbols for “subset”: ⊆, (, and ⊆. A ⊆ B means that A
is a subset of B and we allow A = B and A ( B means that A is a subset of B and we forbid
A = B. However, there is a problem with the third symbol, some people use it as a synonym
of ⊆ and some use it as a synonym of (. Due to this ambiguity we are going to avoid using
it in this book.
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B

A

(a) A ⊆ B

A,B

(b) A = B

Figure 5.1: Euler diagrams

5.2.2 Descriptions of Sets

Listing elements. There are several ways to construct a set, the simplest one
is just to list them. For example

1. {1, 2, π} is the set consisting of three elements 1, 2, and π, and

2. {1, 2, 3, . . .} is the set of all positive integers i.e. it is the set N.

Conditional definitions. We may also describe a set using some constraint
e.g we may list all the even numbers using the following formula {n ∈ Z : n is even}
(we read it as “the set of all integers n such that n is even”).

Using this we may also define the set of all integers from 1 to m, we denote
it [m]; i.e. [m] = {n ∈ N : 0 < n ≤ m}.

Constructive definitions. Another way to construct a set of all even num-
bers is to use the constructive definition of a set: {2k : k ∈ Z}.

We may also describe a set of rational numbers using this description: Q =
{a/b : a ∈ Z, b ∈ N} (note that we may also use a mix of a conditional and
constructive definitions, Q = {a/b : a, b ∈ Z, b 6= 0}).

Exercise 5.2. Describe a set of perfect squares using constructive type of defi-
nition.

5.2.3 Disjoint Sets

Two sets are disjoint iff they do not have common elements. We also say that
two sets are overlapping iff they are not disjoint i.e. they share an element.

More generally, A1, . . . , A` are pairwise disjoint iff Ai is disjoint with Aj for
all i 6= j ∈ [`]

Exercise 5.3. Of the sets in Exercise 5.1, which are disjoint from which?
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A

B

(a) A ∪B

A

B

(b) A ∩B

A

B

(c) A \B

A

B

A

B

(d) A∆B

Figure 5.2: Operations over the sets

5.3 Operations over Sets.

Another way to describe a set is to apply operation to other sets. Let A and B
be sets.

The first example of the operations on sets is the union operation. The union
of A and B is the set containing all the elements of A and all the elements of B
i.e. A ∪B = {x : x ∈ A or x ∈ B}5.

Another example of such an operation is intersection. The intersection of
A and B is the set of all the elements belonging to both A and B i.e A ∩ B =
{x : x ∈ A and x ∈ B}6.

The third operation we are going to discuss this lecture is set difference. If
A and B are some sets, then A \B = {x : x ∈ A and x 6∈ B}.

The last operation is symmetric difference. If A and B are some sets, then
A∆B = (A \B) ∪ (B \A). Note that alternatively A∆B = (A ∪B) \ (A ∩B)

Exercise 5.4. Describe the set {n ∈ N : n is even} ∩ {3n : n ∈ N}.
5Note that this definition is not correct since in the conditional definitions we have to

specify the set x belongs to and we cannot do this here.
6You may notice that in the definition of the union we use disjunction and in the definition

of intersection we use conjunction. Actually this is a the reason the symbol of the conjunction
is similar to the symbol of intersection and the symbol of the disjunction is similar to the
symbol of union.
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Theorem 5.1. Let A, B, and C be some sets. Then we have the following
identities.

associativity: A ∪ (B ∪ C) = (A ∪B) ∪ C and A ∩ (B ∩ C) = (A ∩B) ∩ C.

commutativity: A ∪B = B ∪A and A ∩B = B ∩A.

distributivity: A∪ (B ∩C) = (A∪B)∩ (A∪C) and A∩ (B ∪C) = (A∩B)∪
(A ∩ C).

Proof. One may prove these properties using the Euler diagrams. Alternatively
they can be proven by definitions. Let us prove only the first part of the dis-
tributivity, the rest is Exercise 5.5.

Our proof consists of two parts in the first part we prove that A∪ (B∩C) ⊆
(A∪B)∩ (A∪C). Suppose that x ∈ A∪ (B ∩C). Then x ∈ A or x ∈ (B ∩C).

• If x ∈ A, then x ∈ (A ∪B) and x ∈ (A ∪ C) i.e. x ∈ ((A ∪B) ∩ (A ∪ C)).

• If x ∈ (B ∩ C), then x ∈ B and x ∈ C. Which implies that x ∈ (A ∪ B)
and x ∈ (A ∪ C). As a result, x ∈ ((A ∪B) ∩ (A ∪ C)).

Exercise 5.5. Prove the rest of the equalities in Theorem 5.1.

Probably the most difficult concept connected to sets is the concept of a
power set. Let A be some set, then the set of all possible subsets of A is
denoted by 2A (sometimes this set is denoted by P(A)) and called the power
set of A. In other words 2A = {B : B ⊆ A}.

Warning: Please do not forget about two extremal elements of the
power set 2A: the empty set and A itself.

For example if A = {1, 2, 3}, then

2A = {∅, {1} , {2} , {3} , {1, 2} , {1, 3} , {2, 3} , {1, 2, 3}} .

5.4 The Well-ordering Principle

Using the set notation we may finally justify the proof of the statement that
2n > n for all positive integers n from the video about mathematical induction.
In order to do this let us first formulate the following theorem.

Theorem 5.2. Let A ⊆ Z be a non-empty set. We say that b ∈ Z is a lower
bound for the set A iff b ≤ a for all a ∈ A. Additionally, we say that the set A
is bounded if there is a lower bound for A.

Given this, if A is bounded, then there is a lower bound a ∈ A for the set A
(we say that a is the minimum of the set A).
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Note that this theorem also states that any subset of natural numbers have
a minimum.

Recall that we wish to prove that 2n > n for all positive n. Assume that it
is not true, in this case the set A = {n ∈ N : 2n < n} is non-empty. Denote by
n0 the minimum of the set A, n0 exists by Theorem 5.2. We may consider the
following two cases.

• If n0 = 1, then it leads to a contradiction since 2 = 21 > 1.

• Otherwise, note that 1 ≤ n0 − 1 < n0, hence, 2n0−1 > n0 − 1. So 2n0 >
2n0 − 2 ≥ n0. Which is a contradiction with the definition of n0.

Finally, we prove Theorem 5.2.

Proof of Theorem 5.2. Let b be a lower bound for the set A. Assume that there
is no minimum of the set A. Let P (n) be the statement that n /∈ A.

First, we are going to prove that P (n) is true for all n ≥ b. The base case
is true since if b ∈ A, then b is the minimum of A which contradicts to the
assumption that there is no minimum of A. The induction step is also clear,
by the induction hypothesis we know that P (b), . . . , P (k) are true, hence,
(k + 1) ∈ A implies that k + 1 is the minimum of A.

Now we prove that A is empty. Assume the opposite i.e. assume that there
is x ∈ A. Note that x ≥ b since b is a lower bound of A. However, P (x) is true
which implies that x /∈ A. Therefore the assumption was false and A is empty,
but this contradicts to the fact that A is non- empty.

End of The Chapter Exercises
5.6 Find the power sets of ∅, {1}, {1, 2}, {1, 2, 3, 4}. How many elements in

each of this sets?

5.7 Prove that

• A ⊆ B ⇐⇒ A ∪B = B,

• A ⊆ B ⇐⇒ A ∩B = A.

5.8 Let A be a subset of a set U we call this set a universe. We say that the
set A = U \A is a complement of A in U . Show the following equalities

• A = A.

• A ∪B = A ∩B.

• A ∩B = A ∪B.

5.9 Let us define an intersection of more than two sets as follows. Let A1, . . . ,
An be some sets. Then

•
⋂1
i=1Ai = A1 and
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•
⋂k+1
i=1 Ai =

(⋂k
i=1Ai

)
∩Ak+1.

Show that
⋂n
i=1 {x ∈ N : i ≤ x ≤ n} = {n} for all integers n > 0.

5.10 Let us define a union of more than two sets as follows. Let A1, . . . , An be
some sets. Then

•
⋃1
i=1Ai = A1 and

•
⋃k+1
i=1 Ai =

(⋃k
i=1Ai

)
∪Ak+1.

Show that
⋃n
i=1[i] = [n] for all integers n > 0.

5.11 Let Ω be some set andA1, . . . , An ⊆ Ω. Show that
⋃n
i=1Ai = {x ∈ Ω : ∃i ∈ [n] x ∈ Ai}.

5.12 Let A1, . . . , An be some sets. Show that
n⋃
i=1

(Ai ∩B) = (
⋃n
i=1Ai) ∩B.

5.13 Show that A∆(B∆C) = (A∆B)∆C.
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Chapter 6

Functions

youtu.be/VHJeUrCedTU
Functions and Quantifiers

Another important type of objects in mathematics
are functions. Function f from a set X to a set Y
(we write it as f : X → Y ) is a unique assignment
of elements of Y to the elements of X. In other
words, for each element x ∈ X there is one assigned
element f(x) ∈ Y . We call such an element the
value of f at x, we also say that f(x) is an image
of x.

Unfortunately, the definition is not formal. In
the rest of the chapter we are going to give a more
formal definition.

6.1 Quantifiers.

The first ingredient is called quantifiers. Very often we use phrases like “all the
people in the class have smartphones.” However, we still do not know how to
write it using symbols.

The Universal Quantifier. In order to say “all” or “every” we use the symbol
∀: if P (a) is a predicate about a ∈ A, then ∀a ∈ A P (a) is a statement saying
that all the elements of A satisfy the predicate P . In other words it is the same
as the statement {a ∈ A : P (a)} = A. For example, ∀x ∈ R x · 0 = 0 says that
product of every real number and zero is equal to zero.

The Existential Quantifier. The second quantifier means “there is” and
denoted by the symbol ∃: if P (a) is a predicate about an element of A, then
∃a ∈ A P (a) says that there is an element of A satisfying the predicate P i.e.
{a ∈ A : P (a)} 6= ∅. For example, ∃x ∈ R x2− 1 = 0 states that there is a real
solution of the equation x2 − 1 = 0.
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Warning: Note that the word “any” sometimes indicates a universal
statement and sometimes an existential statement.
Standard meaning of “any” is “ever” like in the statement “a2 ≥ 0 for any
real number”, therefore this statement can be rewritten as ∀a ∈ R a2 ≥
0. Nonetheless, in the negative and interrogative statements “any” is
used to mean “some”. For example, “There is not any real number a
such that a2 < 0” is asserting that the statement ∃a ∈ R a2 < 0 is false.
And “Is there any real number a such that a2 = 1?” is asking whether
the existential statement ∃a ∈ R a2 = 1 is true.
Real care is required with questions involving “any”: “Is there any integer
a such that a ≥ 1?” clearly is asking whether ∃a ∈ R a2 ≥ 1 is true;
however, “Is a ≥ 1 for any integer a” is less clear and might be taken
to asking about the same question as the first question, ∃a ∈ Z a ≥ 1
(which is true) but might also be taken to be asking about ∀a ∈ Z a ≥ 1
(which is false).

6.1.1 Proving Statements Involving Quantifiers

Most of the statements in mathematics involve quantifiers. This is one of the
factors distinguishing advanced from elementary mathematics. In this section
we give an overview of the main methods of proof. Though the whole book is
about proving such results.

Proving statements of the form ∀a ∈ A P (a). Such statements can be
rewritten in the form a ∈ A =⇒ P (a). For example, we proved earlier that
a2 ≥ 0 for all real numbers a using this approach.

Proving statements of the form ∃a ∈ A P (a). The easiest way to prove
such a statement is by simply exhibiting an element a of A such that P (a) is
true. This method is called proof by example.

Let us prove the statement ∃x ∈ N x2 = 4 using this method. Observe that
2 ∈ N and 22 = 4 so x = 2 provides an example proving this statement. There
are, however, less direct methods such as use of the counting arguments.

Proving statements involving both quantifiers. To illustrate problems
of this type let us prove that for any integer n, if n is even, then n2 is also even.

This statement is a universal statement ∀n ∈ Z (n is even =⇒ n2 is even).
However, the hypothesis that n is even is an existential statement ∃q ∈ Z n = 2q.
So we begin the proof as follows:

Suppose that n is an even integer. Then n = 2q for some integer q.

The conclusion we wish to prove is that n2 is even, which may be written as
∃q ∈ Z n2 = 2q. Note that q here is a dummy variable used to express the
statement n2 is a doubled integer. We may replace it by any other letter not
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already in use, for example ∃p ∈ Z n2 = 2p. Hence, if we present p such that
n2 = 2p we finish the proof. As a result, we can complete the proof as follows.

Therefore, n2 = (2q)2 = 4q2 and so, since 2q2 is an integer n2 is even.

6.1.2 Disproving Statements Involving Quantifiers

Disproving something seems a bit off from the first glance, but to some extent
it is the same as proving the negation.

Disproving statements of the form ∀a ∈ A P (a). We may note that
the negation of such a statement is the statement ∃a ∈ A ¬P (a). So we can
disprove it by giving a single example for which it is false. This is called Disproof
by counterexample to P (a).

For example, we may disprove the statement ∀x ∈ R x2 > 2 by giving a
counterexample x = 1 since 12 = 1 < 2.

Disproving statements of the form ∃a ∈ A P (a). The negation of this
statement is the statement ∀a ∈ A ¬P (a). Which gives one way of disproving
the statement.

Let us prove that does not exist a real number x such that x2 = −1. We
know that, for all x ∈ R, we have the inequality x2 ≥ 0 and so x2 6= −1. Hence,
there does not exist x ∈ R such that x2 = −1.

6.2 Cartesian product

Another ingredient is the notion of Cartesian product. If X and Y are two
sets, then X × Y = {(x, y) : x ∈ X and y ∈ Y }. When X = Y we denote
X ×X = X2.

Consider the following example. If X = {a, b, c} and Y = {a, b}, then

X × Y = {(a, a), (a, b), (b, a), (b, b), (c, a), (c, b)} .

Additionally, R2 = R× R is the familiar 2-dimensional Euclidean plane.

Exercise 6.1. Find the set {a, b} × {a, b} \ {(x, x) : x ∈ {a, b}}

Theorem 6.1. For all sets A, B, C, and D the following hold:

• A× (B ∪ C) = (A×B) ∪ (A× C);

• A× (B ∩ C) = (A×B) ∩ (A× C);

• (A×B) ∪ (C ×D) ⊆ (A ∪ C)× (B ∪D);

• (A×B) ∩ (C ×D) = (A ∩ C)× (B ∩D).
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Proof. It is easy to prove this statement by the definitions. Let us prove only
the second equality, the rest is Exercise 6.2.

Note that (x, y) ∈ A × (B ∩ C) iff x ∈ A and y ∈ (B ∩ C). Hence, (x, y) ∈
A × (B ∩ C) iff x ∈ A, y ∈ B, and y ∈ C. Thus (x, y) ∈ A × (B ∩ C) iff
(x, y) ∈ (A × B) and (x, y) ∈ (A × C). As a result, (x, y) ∈ A × (B ∩ C) iff
(x, y) ∈ (A×B) ∩ (A× C) as required.

Exercise 6.2. Prove the rest of the equalities in Theorem 6.1.

6.3 Graphs of Functions
Now we have all the components to define a function. Mathematicians think
about the functions in the way we defined them at the beginning of the chapter,
however formally in order to define a function f : X → Y one need to define a
set D ⊆ X × Y (such a set is called the graph of the function f) such that

• ∀x ∈ X ∃y ∈ Y (x, y) ∈ D and

• ∀x ∈ X, y1, y2 ∈ Y ((x, y1) ∈ D ∧ (x, y2) =⇒ y1 = y2).

We say that y ∈ Y is the value f(x) of the function described by D at x ∈ X
iff (x, y) ∈ D.

The simplest way to think about the functions is in the terms of tables. Let
us use this idea to list all the functions {a, b, c} to {d, e}.

x f1(x) f2(x) f3(x) f4(x) f5(x) f6(x) f7(x) f8(x)
a d d d d e e e e
b d d e e d d e e
c d e d e d e d e

Exercise 6.3. List all the functions from {a, b} to {a, b}.

However, listing all the values of a function is only possible when the domain
of the function is finite. Thus the most common way to describe a function is
using a formula which provides a way to find the value of a function. When the
function is defined as a formula it is important to be clear which sets are the
domain and the codomain of the function.

Let R+ = {x ∈ R : x ≥ 0}. Consider the following functions.

• g1 : R→ R such that g1(x) = x2;

• g2 : R+ → R such that g2(x) = x2;

• g3 : R→ R+ such that g3(x) = x2;

• g4 : R+ → R+ such that g4(x) = x2;

Nonetheless that all these functions are defined using the same formula x2, we
will see in the next chapters that these four functions have different properties.
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Exercise 6.4. Find the graph of the function f : Z→ Z such that f(x) = 3x.

Note that when you define the function you need to define it such that the
definition makes sense for all the elements of the domain. For example, the
formula g(x) = x2−3x+2

x−1 does not define a function from R to R since it is
not defined for x = 1. It is typical to define a function from real numbers to
real numbers by a formula and the convention is that the domain is the set of
all numbers for which the formula makes sense (unless the domain is specified
explicitly). Using this convention the formula g defines a function from R \ {1}
to R.

If we really need a function from R there are two possible approaches for
extending g.

Rewriting the formula. We can rewrite the formula such that it makes sense
for all the real numbers. Note that for all x ∈ R \ {1},

x2 − 3x+ 2

x− 1
=

(x− 2)(x− 1)

x− 1
= x− 2.

Then g1(x) = x− 2 defines a function on R extending the function g.

Explicit definition. Alternatively we can explicitly specify the value of g at
1. So

g2(x) =

{
x2−3x+2
x−1 if x 6= 1

−1 if x = 1

defines a function from R to R. Note that we can specify the values at individual
points any way we want.

Similarly to sets we may define the equality between functions. We say that
two functions f, g : X → Y are equal (f = g) iff f(x) = g(x) for all x ∈ X i.e.
their graphs are equal. Note that two functions are equal only if they have the
same domains and codomains. For example, g1 and g2 we just defined are equal
to each other none the less that we defined them in two different ways.

We defined g1 and g2 to extend g to a bigger domain, similarly we can make
a domain smaller.

Definition 6.1. Let f : X → Y and A ⊆ X. Then f |A : A → Y is a function
such that ∀x ∈ A f |A(x) = f(x).
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6.4 Composition of Functions

f
X

x

Y

f(x)

g
Z

g
(
f(x)

)

g ◦ f

Suppose f : X toY and g : Y → Z be some function. Then, given an
element x ∈ X, the function f assigns y = f(x) ∈ Y , and the function g assigns
z = g(y) = g(f(x)) ∈ Z. Thus using f and g an element of Z can be assigned
to x. This operation defines a function from X to Z and the result of this
operation is called the composition of f and g.

Definition 6.2. If f : X → Y and g : Y → Z, then h = g ◦ f is a function
from X to Z such that ∀x ∈ X g(f(x)) = h(x).

.
Let us consider an example. Let f : R → R such that f(x) = x + 1 and

g : R→ R such that g(x) = x2. Then (g◦f) : R→ R and (g◦f)(x) = (x+1)2 for
all x ∈ R. Note that the order of f and g is important since (f ◦ g)(x) = x2 + 1.
Thus composition is not commutative.

There are two special type functions.

• Let A ⊆ X, then i : A → X such that i(a) = a for all a ∈ A is called
the inclusion function of A into X. Observe that (f ◦ i) : A → X and
(f ◦ i) = f |A for any function f : X → Y .

• Another important function is called the identity function. Let X be some
set. Then IX : X → X is an identity function iff IX(x) = x.

Theorem 6.2. Let f : X → Y , g : Y → Z, and h : Z →W . Then

• f ◦ (g ◦ h) = (f ◦ g) ◦ h.

• f ◦ IX = f = IY ◦ f .
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Proof. These results can be proven simply by evaluating the functions. For
example, both functions in the first equality assign h(g(f(x))) for any x ∈ X
and so functions are equal.

Notice that this theorem states that we may write f ◦g◦h without ambiguity.

6.5 The Image of a Function
Given a function f : X → Y , it is not necessary that every element of Y is an
image of some x ∈ X. For example, the function R→ R defined by the formula
x2 does not have −1 as a value.

Thus we may give the following definition.

Definition 6.3. The image of the function f is defined as follows

Imf = {y ∈ Y : ∃x ∈ X f(x) = y} = {f(x) : x ∈ X}

(in other words it is the projection of the graph D of f on the second coordinate:
Imf = {y : (x, y) ∈ D}).

End of The Chapter Exercises
6.5 Find an image of the function f : Z→ Z such that f(x) = 3x.

6.6 Determine the following sets:

• {m ∈ N : ∃n ∈ N m ≤ n};
• {m ∈ N : ∀n ∈ N m ≤ n};
• {n ∈ N : ∃m ∈ N m ≤ n};
• {n ∈ N : ∀m ∈ N m ≤ n}.

6.7 Prove or disprove the following statements.

• ∀m,n ∈ N m ≤ n.
• ∃m,n ∈ N m ≤ n.
• ∃m ∈ N∀n ∈ N m ≤ n.
• ∀m ∈ N∃n ∈ N m ≤ n.
• ∃n ∈ N∀m ∈ N m ≤ n.
• ∀n ∈ N∃m ∈ N m ≤ n.
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Chapter 7

Relations

Nonetheless that function are used almost everywhere in mathematics, many
relations are not functional by their nature. For example, could never define a
function r(a) that gives the solution of x2 = a because there are two solutions
for a > 0 and there are zero solutions for a < 0. A relation is a more general
mathematical object.

In order to define a relation we need to relax the definition of the graph of a
function (Section 6.3) by allowing more than one “result” and by allowing zero
“results”. In other words we just say that any set R ⊆ X1 × · · · ×Xk is a k-ary
relation on X1, . . . , Xk. We also say that x1 ∈ X1, . . . , xk ∈ Xk are in the
relation R iff (x1, . . . , xk) ∈ R. If k = 2 such a relation is called a binary relation
and we write xRy if x and y are in the relation R. If X1 = · · · = Xk = X, we
say that R is a k-ary relation on X.

Note that =, ≤, ≥, <, and > define relations on R (or any subset S of R). For
example, if S = {0, 1, 2}, then < defines the relation R = {(0, 1), (0, 2), (1, 2)}.

Probably the most popular relation in mathematics is the following relation
on Z. Let a, b ∈ Z. If n divides a− b for some n ∈ Z, we say that “a equivalent
to b modulo n” and denote it as a ≡ b (mod n). For example, 1 and 4 are
equivalent modulo 3 since 3 divides 1− 4 = −3.

7.1 Equivalence Relations

The definition of a relation is way to broad. Hence, quite often we consider
some types of relation. Probably the most interesting type of the relations is
equivalence relations.

Definition 7.1. Let R be a relation on a set X. We say that R is an equivalence
relation if it satisfies the following conditions:

reflexivity: xRx for any x ∈ X;

symmetry: xRy iff yRx for any x, y ∈ X;

43
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transitivity: for any x, y, z ∈ X, if xRy and yRZ, then xRz;

One may guess that the equivalence relation are mimicking =, so it is not a
surprise that = is an equivalence relation.

The definition seems quite bizarre, however, all of you are already familiar
with an important example: you know that equivalent fractions represent the
same number. For example 2

4 is the same as 1
2 . Let us consider this example

more thorough, let S be a set of symbols of the form x
y (note that it is not a

set of numbers) where x, y ∈ Z and y 6= 0. We define a binary relation R on S
such that x

y and z
w are in the relation R iff xw = zy. It is easy to prove that

this relation is an equivalence relation.

reflexivity: Let a
b ∈ S. Since ab = ab, we have that a

bR
a
b .

symmetry: Let a
b ,

c
d ∈ S. Suppose that

a
bR

c
d , by the definition of R, it implies

that ac = db. As a result, cdR
a
b .

transitivity: Let a
b ,

c
d ,

e
f ∈ S with a

bR
c
d and c

dR
e
f . Then ad = cb and cf = ed.

The first equality can be rewritten as c = ad/b. Hence, adf/b = ed and
af = eb since d 6= 0. So a

bR
e
f .

7.1.1 Partitions
Let S be some set. We say that {P1, . . . , Pk} form a partition of S iff P1, . . . ,
Pk are pairwise disjoint and P1 ∪ · · · ∪ Pk = S; in other words, a partition is a
way of dividing a set into overlapping pieces.

Exercise 7.1. Let {P1, . . . , Pk} be a partition of a set S and R be a binary
relation of S such that aRb iff a, b ∈ Pi for some i ∈ [k]. Show that R is an
equivalence relation.

This exercise shows that one may transform a partition of the set S into an
equivalence relation on S. However, it is possible to do the opposite.

Theorem 7.1. Let R be a binary equivalence relation on a set S. For any
element x ∈ S, define Rx = {y ∈ S : xRy} (the set of all the elements of S
related to x) we call such a set the equivalence class of x. Then {Rx : x ∈ S}
is a partition of S.

Exercise 7.2. Prove Theorem 7.1.

7.1.2 Modular Arithmetic
The relation “≡ (mod n)” is actively used in the number theory. One of the
important properties of this relation is that it is an equivalence relation.

Theorem 7.2. The relation ≡ (mod n) is an equivalence relation.

Proof. To prove this statement we need to prove all three properties: reflexivity,
symmetry, and transitivity.
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reflexivity: Note that for any integer x, x − x = 0 is divisible by any integer
including n. Hence, x ≡ x (mod n).

symmetry: Let us assume that x ≡ y (mod n); i.e. x − y = kn for some
integer k. Note that y − x = (−k)n, so y ≡ x (mod n).

transitivity: finally, assume that x ≡ y (mod n) and y ≡ z (mod n); i.e.
x − y = kn and y − z = `n for some integers k and `. It is easy to note
that x− z = (x− y) + (y − z) = (k + `)n. As a result, x ≡ z (mod n).

Thus, we proved that ≡ (mod n) is an equivalence relation.

Let x ∈ Z; we denote by rx,n the equivalence class of x with respect to
the relation ≡ (mod n), we also denote by Z/nZ the set of all the equivalence
classes with respect to the relation ≡ (mod n).

Another important property of these relation is that they behave well with
respect to the arithmetic operations.

Theorem 7.3. Let x, y ∈ Z and n ∈ N. Suppose that a ∈ rx,n and b ∈ ry,n,
then (a+ b) ∈ rx+y,n and ab ∈ rxy,n.

Using this theorem we may define arithmetic operations on the equiva-
lence classes with respect to the relation ≡ (mod n). Let x, y ∈ Z and
n ∈ N. Then rx,n + ry,n = {a+ b : a ∈ rx,n, b ∈ ry,n} = rx+y,n and rx,nry,n =
{ab : a ∈ rx,n, b ∈ ry,n} = rxy,n. Moreover, these operations have plenty of
good properties.

Exercise 7.3. Let a, b, c ∈ Z/nZ. Show that the following equalities are true:

• a+ (b+ c) = (a+ b) + c,

• a+ r0,n = a (thus we denote r0,n as 0),

• ar1,n = a (thus we denote r1,n as 1),

• there is a class d ∈ Z/nZ such that a+ d = r0,n (thus we denote this d as
−a),

• a+ b = b+ a,

• ab = ba,

• a(b+ c) = ab+ ac,

7.2 Partial Orderings

In the previous section we discussed a mathematical way to express the property
being similar. In this section we are going to give a way to analyze relation
similar to comparisons.
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Definition 7.2. A binary relation R on S is a partial ordering if it satisfies the
following constraints.

reflexivity: xRx for any x ∈ S;

antisymmetry: if xRy and yRx, then x = y for all x, y ∈ S;

transitivity: for any x, y, z ∈ S, if xRy and yRZ, then xRz;

We say that an order R on a set S is total iff for any x, y ∈ S, either xRy
or yRx.

Note that if S is a set of numbers, then ≤ defines a partial ordering on S;
moreover, it defines a total order.

Typically we use symbols similar to � to denote partial orderings and we
write a ≺ b to express that a � b and a 6= b.

Let | be the relation on Z such that d | n iff d divides n.

Theorem 7.4. The relation | is a partial ordering of the set N.

Proof. To prove that this relation is a partial ordering we need to check all three
properties.

reflexivity: Note that x = 1 · x for any integer x; hence, x | x for any integer
x.

antisymmetry: Assume that x | y and y | x. Note that it means that kx = y
and `y = x for some integers k and `. Hence, y = (k · `)y which implies
that k · ` = 1 and k = ` = 1. Thus, x = y.

transitivity: finally, assume that x | y and y | z; i.e. kx = y and `y = z. As a
result, (k · `)x = z and x | z.

Exercise 7.4. Let S be some set, show that ⊆ defines a partial ordering on the
set 2S.

7.2.1 Topological Sorting
Partial orderings are very useful for describing complex processes. Suppose that
some process consists of several tasks, T denotes the set of these tasks. Some
tasks can be done only after some others e.g. when you cooking a salat you
need to wash vegetables before you chop them. If x, y ∈ T be some tasks, x � y
if x should be done before y and this is a partial ordering.

In the applications this order is not a total order because some steps do
not depend on other steps beeing done first (you can chop tomatos and chop
cucumbers in any order). However, if we need to create a schedule in which
the tasks should be done, we need to create a total ordering on T . Moreover,
this order should be compatible with the partial ordering. In other words, if
x � y, then x �t y for all x, y ∈ T , where �t is the total order. The technique
of finding such a total ordering is called topological sorting.
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Theorem 7.5. Let S be a finite set and � be a partial order on S. Then there
is a total order �t on S such that if x � y, then x �t y for all x, y ∈ S

This sorting can be done using the following procedure.

• Initiate the set S beeing equal to T

• Choose the minimal element of the set S with respect to the ordering �
(such an element exists since S is a finite set, see Chapter 8). Add this
element to the list, remove it from the set S, and repeate this step if S 6= ∅.

Let us consider the following example. In the left column we list the classes
and in the right column the prerequisite.

Courses Prerequisite
Math 20A
Math 20B Math 20A
Math 20C Math 20B
Math 18
Math 109 Math 20C, Math 18
Math 184A Math 109

We need to find an order to take the courses.

1. We start with

S = {Math 20A,Math 20B,Math 20C,Math 18,Math 109,Math 184} .

There are two minimal elements: Math 20A and Math 18. Let us remove
Math 18 from S and add it to the resulting list R.

2. Now we have
R = Math 18

and

S = {Math 20A,Math 20B,Math 20C,Math 109,Math 184} .

There is only one minimal element Math 20A. We remove it and add it to
the list R.

3. On this step
R = Math 18,Math 20A

and
S = {Math 20B,Math 20C,Math 109,Math 184} .

Again there is only one minimal element: Math 20B.

4.
R = Math 18,Math 20A,Math 20B

and
S = {Math 20C,Math 109,Math 184} .

There is only one minimal element: Math 20C.
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5.
R = Math 18,Math 20A,Math 20B,Math 20C

and
S = {Math 109,Math 184} .

There is only one minimal element: Math 109.

6. Finally,

R = Math 18,Math 20A,Math 20B,Math 20C,Math 109

and
S = {Math 184} .

There is only one minimal element: Math 184A.

As a result, the final list is

R = Math 18,Math 20A,Math 20B,Math 20C,Math 109,Math 184A.

End of The Chapter Exercises
7.5 Show that the relation | does not define a partial ordering on Z.

7.6 Let a relation R be defined on the set of real numbers as follows: xRy iff
2x+ y = 3. Show that it is antisymmetric.

7.7 Are there any minimal elements in N with respect to |? Are there any
maximal elements?
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Chapter 8

Bijections, Surjections, and
Injections

youtu.be/fW5Zxg0TMDc
Bijections, Surjections, and

Injections

In the previous chapters we used the property that
the set is finite. However, we have never defined
formally what it means. In this chapter we define
cardinality which is a formalization of the notion
size of the set.

8.1 Bijections
Definition 8.1. Let f : X → Y be a function. We
say that f is a bijection iff the following properties
are satisfied.

• Every element of Y is an image of some element of X. In other words,

∀y ∈ Y ∃x ∈ X f(x) = y.

• Images of any two elements of X are different. In other words,

∀x1, x2 ∈ X f(x1) 6= f(x2).

Let us consider the following example. Let f : R → R be a function such
that f(x) = x+ 1; Note that it is a bijection:

• If f(x1) = f(x2), then x1 + 1 = x2 + 1 i.e. x1 = x2.

• For any y ∈ R, f(y − 1) = (y − 1) + 1 = y.

Exercise 8.1. Show that x3 is a bijection.

One of the nicest properties of bijections is that composition of two bijections
is a bijection.
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Theorem 8.1. Let X, Y , and Z be some sets and f : X → Y and g : Y → Z
be bijections. Then (g ◦ f) : X → Z is also a bijection.

Proof. We need to check two properties.

• Let x1 6= x2 ∈ X. Note that f(x1) 6= f(x2) since f is a bijection. Hence,
g(f(x1)) 6= g(f(x2)) since g is a bijection as well. As a result, (g◦f)(x1) 6=
(g ◦ f)(x2).

• Let z ∈ Z; we need to find x ∈ X such that (g ◦ f)(x) = y. Note that
since g is a bijection there is y ∈ Y such that g(y) = z. Additionally, there
is x ∈ X such that f(x) = y since f is a bijection. Thus, (g ◦ f)(x) =
g(f(x)) = z.

Probably the most important property of a bijection is that we may invert
it.

Theorem 8.2. Let f : X → Y be a function. f is invertible (i.e. there is a
function g : Y → X such that (f ◦ g)(y) = y and (g ◦ f)(x) = x for all x ∈ X
and y ∈ Y ) iff f is a bijection.

Proof. ⇒ Let’s assume that f is invertible. We need to prove that f is a
bijection.

• Let’s assume that f does not satisfy the first property in the defini-
tions of bijections i.e. there are x1, x2 ∈ X such that f(x1) = f(x2)
but x1 = g(f(x1)) = g(f(x2)) = x2, which is a contradiction.

• Let y ∈ Y . Note that f(g(y)) = y, hence, Imf = Y .

⇐ Let’s assume that f is bijective. We need to define a function g : Y → X
which is an inverse of f . Let y ∈ Y , note that there is a unique x such
that f(x) = y, we define g(y) = x. Note that f(g(y)) = y for every y by
the construction of g. Additionally, g(f(x)) = x since f(g(f(x))) = f(x)
and f is a bijection.

One may notice that if we have a bijection f from [n] to a set S we enumerate
all the elements of S: f(1), . . . , f(n). This observation allows us to define the
cardinality of a set.

Definition 8.2. Let S be a set, we say that cardinality of S is equal to n (we
write that |S| = n) iff there is a bijection from [n] to S.

We also say that a set T is finite if there is an integer n such that |T | = n.

Note that this definition does not guarantee that cardinality is unique.

Theorem 8.3. For any set S, if there are bijections f : [n]→ S and g : [m]→
S, then n = m.
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Proof. Let us consider the inverse g−1 of g. Note that h = f ◦ g−1 is a bijection
from [n] to [m].

We prove using induction by n that for any n,m ∈ N, if there is a bijection
h′ from [n] to [m], then n = m. The base case is for n = 1; if m ≥ 2, then there
are x, y ∈ [1] such that h′(x) = 1 and h′(y) = 2, but x 6= y and we have only
one element in [1].

The induction step is also simple. Assume that there is a bijection h′ from
[n+ 1] to [m]. We define a function h′′ : [n]→ [m− 1] as follows:

h′′(i) =

{
h′(i) if h′(i) < h(n+ 1)

h′(i)− 1 otherwise
.

We prove that h′′ is a bijection.

• Let i1 6= i2 ∈ [n]. If h′(i1), h′(i1) < h′(n+ 1) or h′(i1), h′(i1) ≥ h′(n+ 1),
then h′′(i1) 6= h′′(i2) since h′(i1) 6= h′(i2). Otherwise, without loss of
generality we may assume that h′(i1) < h(n + 1) < h′(i2) but it implies
that h′′(i1) = h′(i1) < h′(n+ 1) ≤ h′(i2)− 1 = h′′(i2).

• Let j ∈ [m− 1]. We need to consider two cases.

1. Let j < h(n+ 1). There is i ∈ [n+ 1] such that h′(i) = j since h′ is
a bijection (note that i 6= n+ 1). Thus h′′(i) = j.

2. Otherwise, there is i ∈ [n + 1] such that h′(i) = j + 1 since h′ is a
bijection (note that i 6= n+ 1). Thus h′′(i) = j.

Since h′′ is a bijection, the induction hypothesis implies that n = m − 1. As a
result, n+ 1 = m.

Using Theorem 8.2 we may derive a way to apply this theory in combinatircs;
we can use a bijection to prove that two sets have the same cardinality.

Theorem 8.4. Let X and Y be two finite sets such that there is a bijection f
from X to Y . Then |X| = |Y |.

Proof. Let |X| = n, and g : [n] → X be a bijection. Note that f ◦ g : [n] → Y
is a bijection, hence |Y | = m.

Using this result we can make prove the following equality.

Corollary 8.1. Let X be a finite set of cardianlity n. Then 2X has the same
cardinality as {0, 1}|X|.

Proof. To prove this statement we need to construct a bijection from 2X to
{0, 1}|X|. Let |X| = n and f : [n]→ X be a bijection.

First we construct a bijection g1 from 2X to 2[n]: g1(Y ) = {f(x) : x ∈ Y }
(Y ∈ 2X). It is easy to see that the function g−1

1 (Y ) =
{
f−1(x) : x ∈ [n]

}
(Y ∈ 2[n]) is an inverse of g1, so g1 is indeed a bijection.
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Now we need to construct a bijection g2 from 2[n] to {0, 1}n: g2(Y ) =
(u1, . . . , un), where ui = 1 iff i ∈ Y . It is clear that g−1

2 (u1, . . . , un) =
{i ∈ [n] : ui = 1} is an inverse of g2 so g2 is indeed a bijection.

As a result, by Theorem 8.1, the function (g2 ◦ g1) : 2X → {0, 1}|X| is a
bijection.

Theorem 8.5. Let X, Y , Z be some sets There are bijctions from X× (Y ×Z)
and (X × Y )× Z to {(x, y, z) : x ∈ X, y ∈ Y, z ∈ Z}.

Proof. Since the statement is symmetric, it is enough to prove that there is a
bijection f from X×(Y ×Z) to {(x, y, z) : x ∈ X, y ∈ Y, z ∈ Z}. Define f such
that f(x, (y, z)) = (x, y, z). Clearly, f−1(x, y, z) = (x, (y, z)) is the inverse of f ,
so f is indeed a bijection.

8.2 Surjections and Injections

It is possible to note that the definition of the bijection consists of two part.
Both of these parts are interesting in their own regard, so they have their own
names.

Definition 8.3. Let f : X → Y be a function.

• We say that f is a surjection iff every element of Y is an image of some
element of X. In other words,

∀y ∈ Y ∃x ∈ X f(x) = y.

• We say that f is an injection iff images of any two elements of X are
different. In other words,

∀x1, x2 ∈ X f(x1) 6= f(x2).

Remark 8.1. Let f : X → Y be an injection. Then g : X → Imf such that
f(x) = g(x) is a bijection.

Exercise 8.2. Let R+ = {x ∈ R : x > 0}. Is f : R+ → R+ such that f(x) =
x+ 1 a surjection/injection?

Like in the case of the bijection we may use surjections and injections to
compare sizes of sets.

Theorem 8.6. Let X and Y be finite sets.

• If there is an injection from X to Y , then |X| ≤ |Y |.

• If there is a surjection from X to Y , then |X| ≥ |Y |.
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8.3 Generalized Commutative Operations
Using the notation of cardianlity we may generalize the summation operation
in the followin way:

∑
i∈S : P (i)

f(i) is equal to the sum of f(i) for all the i ∈

{i ∈ S : P (i)}; i.e. ∑
i∈S : P (i)

f(i) =

k∑
j=1

f(ij),

where {i ∈ S : P (i)} = {i1, . . . , ik}. More formally,

∑
i∈S : P (i)

f(i) =

k∑
j=1

f(g(j)),

where k = | {i ∈ S : P (i)} | and g : {i ∈ S : P (i)} → [k] is a bijection.

Theorem 8.7. The definition of
∑

i∈S:P (i)

f(i) is correct; i.e.
k∑
i=1

f(g1(i)) =

k∑
i=1

f(g2(i)) for any two bijections g1, g2 : {i ∈ S : P (i)} → [k].

Proof. Proof of this theorem consists of two parts. First, we prove that

k∑
i=1

f(g(i)) =

k∑
i=1

f(g(h(i))) (8.1)

for any bijections g : {i ∈ S : P (i)} → [k] and h : [k]→ [k].
To prove this statement, we introduce the notion of inversion. We say that

i, j ∈ [k] for an inversion in h iff h(i) > h(j) and i < j. We denote by I(h) the
number of inversions in h; i.e. I(h) = | {(i, j) : i, j form an inversion in h} |.
It is easy to see that I(h) = 0 iff h(i) = i for any i ∈ [k]. It is also clear that if
i, j form an inversion in h, then I(h) > I(h′), where

h′(x) =


h(j) if x = i

h(i) if x = j

h(x) otherwise
.

We prove Equation 8.1 using the induction by I(h).

The base case: if I(h) = 0, then h is an identity function and g(i) = g(h(i)).
Hence, Equation 8.1 is true.

The induction step: by the induction hypothesis, if I(h′) < `, then

k∑
i=1

f(g(i)) =

k∑
i=1

f(g(h′(i)))
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for any bijection h′ : [k] → [k]. Let us consider a bijection h : [k] → [k]
such that I(h) = `. Define h′ : [k]→ [k] such that

h′(x) =


h(j) if x = i

h(i) if x = j

h(x) otherwise
.

Note that by the induction hypothesis,

k∑
i=1

f(g(i)) =

k∑
i=1

f(g(h′(i)))

and it is clear that

k∑
i=1

f(g(h′(i))) =

k∑
i=1

f(g(h(i))).

As a result, Equation 8.1 is true.

Now we are ready to finish proof of the theorem. Consider g1, g2 : {i ∈ S : P (i)} →
[k] and define h = g−1

1 ◦ g2. Note that h : [k] → [k] is a bijection and
g1(h(i)) = g2(i). Thus we proved that

k∑
i=1

f(g1(i)) =

k∑
i=1

f(g(h(i))) =

k∑
i=1

f(g2(i)).

Similarly one may define a generalized union and intersection of sets. Let Ω
and S be some sets, X : S → 2Ω and P (i) be a predicate. Then

⋃
i∈S : P (i)

X(i) =

k⋃
i=1

X(g(i)

and⋂
i∈S : P (i)

X(i) =

k⋂
i=1

X(g(i),

where k = | {i ∈ S : P (i)} | and g : {i ∈ S : P (i)} → [k] is a bijection.

Exercise 8.3. Show that the definitions of
⋃

i∈S:P (i)

X(i) and
⋂

i∈S:P (i)

X(i) are

correct, i.e. that the do not depend on the choice of g.
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End of The Chapter Exercises
8.4 Construct a bijection from {0, 1, 2}n to

{(A,B) : A,B ⊆ [n] and A,B are disjoint} .

8.5 Construct a bijection from {0, 1} × [n] to [2n].

8.6 Prove Theorem 8.6.
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Chapter 9

Counting Principles

9.1 The Additive Principle

youtu.be/dAoperLCjb8
Counting Principles

The first principle is called additive principle and it
states that if you have two disjoint sets, then their
union have size equal to the sum of their sizes.

A simple illustration of this statement is the fol-
lowing. Assume you have three pencils and two
pens; how many ways to choose a writing accessory.
According to this principle the answer is 2 + 3 = 5.

Theorem 9.1 (The Additive Principle). Let X
and Y be finite sets. If X ∩ Y = ∅, then |X ∪ Y | =
|X|+ |Y |.

Proof. Let |X| = n, |Y | = m and g : [n]→ X and h : [m]→ Y be bijections. In
order to prove it we just construct a bijection f : [n+m]→ (X ∪ Y ).

f(i) =

{
g(i) i < n

h(i− n) i > n
.

It’s easy to see that f is an injection. Indeed, assume the opposite i.e. that
there are i0 6= i1 ∈ X ∪ Y such that f(i0) = f(i1). There are three cases.

• The first is when i0, i1 ∈ [n]. In this case g(i0) = g(i1) which contradicts
the assumption that g is a bijection.

• The second is when i0, i1 ∈ {n+ 1, n+ 2, . . . ,m}. In this case h(i0−n) =
h(i1 − n) which contradicts the assumption that h is a bijection.

• Finally, the last case is when i0 ∈ [n] and i1 ∈ {n+ 1, n+ 2, . . . ,m}. It
is easy to see that this implies that g(i0) = h(i1 − n). However, it means
that g(i0) = h(i1 − n) ∈ (X ∩ Y ), which contradicts the assumption that
X ∩ Y = ∅.
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To finitsh the proof we need to show that f is a surjection. Let w ∈ (X∪Y ).
Consider the following two cases.

• Let w ∈ X. There is i ∈ [n] such that f(i) = g(i) = w since g is a
bijection.

• Otherwise, w ∈ Y . In this case, there is i ∈ [m] such that f(i + n) =
h(i) = w since h is a bijection.

Corollary 9.1. Let X1, . . . , Xn be some pairwise disjoint sets. Then |
⋃n
i=1Xi| =∑n

i=1 |Xi|.

Exercise 9.1. Prove Corollary 9.1.

9.2 The Multiplicative Principle
The next principle is called the multiplicative principle and it can be illustration
as follows: imagine that you are given two postal stamps and three envelopes,
how many ways to pack the letter? The answer is obviously 2 · 3 = 6.

Theorem 9.2 (The Multiplicative Principle). Let X and Y be finite sets. Then
|X × Y | = |X| × |Y |.

Proof. If one of the sets X and Y are empty, then X × Y is empty as well and
the statement follows.

Assume that none of the sets is empty. Let |X| = n, |Y | = m, and f :
[n]→ X and g : [m]→ Y be bijections. Note that

⋃n
i=1({f(i)} × Y ) = X × Y .

Additionally, note that ({f(i)} × Y ) ∩ ({f(j)} × Y ) = ∅ for i 6= j. Finally, it
is easy to see that gi : [m] → ({f(i)} × Y ) such that gi(j) = (f(i), g(j)) is a
bijection. Hence, |X × Y | =

∑n
i=1 | {f(i)} × Y | = n ·m.

Exercise 9.2. Find the cardinality of the set {(x, y) : x, y ∈ [9] and x 6= y}.

By analogy with unions and intersections of many sets we can define the
cross product of many sets. Let A1, . . . , An be some sets. Then×1

i=1
Ai = A1

and×k+1

i=1
Ai =

(
×k

i=1
Ai

)
×Ak+1

1.

Corollary 9.2. Let X1, . . . , Xn be some finite sets. Then
∣∣×n

i=1
Ai
∣∣ =

∏n
i=1 |Xi|.

Exercise 9.3. Prove Corollary 9.2.

Theorem 9.3. For any set |X|, |2X | = 2|X|.

Proof. By Corollary 8.1, |2X | =
∣∣∣{0, 1}|X|∣∣∣, so it is enough to prove that | {0, 1}|X| | =

2|X|. This statement is true by Corollary 9.2 since | {0, 1}|X| | =
∏|X|
i=1 | {0, 1} | =

2|X|.
1Note that cross product is not associative and different definitions of the product of several

sets are not equivalent. However, the bijection constructed in the previous section allow us to
think about these definitions as if they are equivalent.
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9.3 The Inclusion-exclusion Principle

The last principle we are going to discuss in this chapter is the inclusion-
exclusion principle which helps us to find the size of the union of sets when
they are not disjoint.

Theorem 9.4 (The Inclusion-exclusion Principle). Let X and Y be finite sets.
Then |X ∪ Y | = |X|+ |Y | − |X ∩ Y |.

Proof. Note that X ∪ Y = (X \ Y ) ∪ (Y \ X) ∪ (X ∩ Y ). Hence, |X ∪ Y | =
|X \Y |+ |Y \X|+ |X∩Y |. But it is possible to note that |Y \X|+ |X∩Y | = |Y |
and |X \ Y |+ |X ∩ Y | = |X|.

Corollary 9.3. Let X1, . . . , Xn be some finite sets. Then∣∣∣∣∣
n⋃
i=1

Xi

∣∣∣∣∣ =
∑

S⊆[n] : S 6=∅

(−1)|S|+1

∣∣∣∣∣⋂
i∈S

Xi

∣∣∣∣∣ .
Proof. As always, we prove this statement using induction by n. The base case
for n = 2 is true by Theorem 9.4.

By the induction hypothesis,∣∣∣∣∣
k⋃
i=1

Xi

∣∣∣∣∣ =
∑

S⊆[k] : S 6=∅

(−1)|S|+1

∣∣∣∣∣⋂
i∈S

Xi

∣∣∣∣∣ .
In addition, by Theorem 9.4,∣∣∣∣∣

k+1⋃
i=1

Xi

∣∣∣∣∣ =

∣∣∣∣∣
k⋃
i=1

Xi

∣∣∣∣∣+ |Xk+1| −

∣∣∣∣∣
(

k⋃
i=1

Xi

)
∩Xk+1

∣∣∣∣∣ .
We need to simplify two elements of the sum on the right of the equality. By
the induction hypothesis,∣∣∣∣∣

k⋃
i=1

Xi

∣∣∣∣∣ =
∑

S⊆[k] : S 6=∅

(−1)|S|+1
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i∈S

Xi

∣∣∣∣∣ .
In addition, it is esy to note that∣∣∣∣∣

(
k⋃
i=1

Xi

)
∩Xk+1

∣∣∣∣∣ =

∣∣∣∣∣
k⋃
i=1

(Xi ∩Xk+1)

∣∣∣∣∣ .
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Thus using the induction hypothesis,∣∣∣∣∣
(

k⋃
i=1

Xi

)
∩Xk+1

∣∣∣∣∣ =

∑
S⊆[k] : S 6=∅

(−1)|S|+1

∣∣∣∣∣⋂
i∈S

(Xi ∩Xk+1)

∣∣∣∣∣ =

∑
S⊆[k+1] : (k+1)∈S and S 6={k+1}

(−1)|S|

∣∣∣∣∣⋂
i∈S

Xi

∣∣∣∣∣ .
As a result,

|Xk+1| −

∣∣∣∣∣
(

k⋃
i=1

Xi

)
∩Xk+1

∣∣∣∣∣ =
∑

S⊆[k+1] : (k+1)∈S

(−1)|S|+1

∣∣∣∣∣⋂
i∈S

Xi

∣∣∣∣∣ .
Which implies that∣∣∣∣∣
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i=1

Xi

∣∣∣∣∣ =
∑

S⊆[k] : S 6=∅

(−1)|S|+1

∣∣∣∣∣⋂
i∈S

Xi

∣∣∣∣∣+
∑

S⊆[k+1] : (k+1)∈S

(−1)|S|+1

∣∣∣∣∣⋂
i∈S

Xi

∣∣∣∣∣ =

∑
S⊆[k+1] : S 6=∅

(−1)|S|+1

∣∣∣∣∣⋂
i∈S

Xi

∣∣∣∣∣ .

End of The Chapter Exercises
9.4 How many numbers from [999] are not divisible neither by 3, nor by 5,

nor by 7.

9.5 How many numbers x from 1 to 999 such that at least one of the digits of
x is 7?

9.6 Let A,B be some finite sets such that A ⊆ B. Show that |A\B| = |A|−|B|.

9.7 Let n be some positive integer. Find the cardinality of the set

{(A,B) : A,B ⊆ [n] and A ∩B 6= ∅}?



Chapter 10

The Pigeonhole Principle

The principle we are going to discuss in this chapter is very simple: it states
that if you have more objects than boxes, then you cannot put all the objects
to boxes without puting two objects in the same box.

More formally the principle can be formulated as follows: if n > m, then any
function from [n] to [m] is not an injection. This simple statement is famous in
mathematics and called the pigeonhole principle1.

Theorem 10.1. Let X and Y be some sets such that |X| > |Y |. Then for any
function f : |X| → |Y | there are x0 6= x1 ∈ X such that f(x0) = f(x1).

Proof. The statement follows from Theorem 8.6.

This simple statement is very handy in combinatorics. For example, using
this statement one may prove that in any group of more than 12 people there
are two people who were born in the same month.

Assume that there are n people in the group and n > 12. Consider the
following function f : [n] → [12] such that f(i) = j if the ith person was born
in jth month. Note that f is not an injection since n > 12 i.e. there are i0 6= i1
such that i0th and i1th person are born in the same month.

We may also prove that in any group of people there are two people who are
friends with the same number of people in the group.

Assume the number of people is n. It is easy to see that every person
may have at most n − 1 friends. Hence, we may define a function f : [n] →
{0, . . . , n− 1} such that f(i) is equal to the number of friends in this group of
the ith person in this group. We need to consider two cases.

• If Imf ⊆ [n− 1]. In this case |[n]| > |Imf | and f is not an injection.

• Otherwise, note that it is not possible that (n − 1) ∈ Imf since it there
is a friend of nobody it is not possible that there is a friend of everyone.
Hence, f : [n]→ {0, 1, . . . , n− 2} and f is not an injection.

1The pigeonhole principle is also called the Dirichlet principle, after the German math-
ematician G. Lejeune Dirichlet, who demonstrated, using this principle, that there were at
least two Parisians with the same number of hairs on their heads.
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Theorem 10.2 (Erdős—Szekeres). Every sequence of (r − 1)(s − 1) + 1 dis-
tinct real numbers contains a subsequence of length r that is increasing or a
subsequence of length s that is decreasing.

Proof. Given a sequence of length (r−1)(s−1)+1, label each number xi in the
sequence with the pair (ai, bi), where ai is the length of the longest increasing
subsequence ending with xi and bi is the length of the longest decreasing sub-
sequence ending with xi. Each two numbers in the sequence are labeled with
a different pair: if i < j and xi < xj then ai < aj , and on the other hand if
xi > xj then bi < bj . But there are only (r − 1)(s − 1) possible labels if ai is
at most r− 1 and bi is at most s− 1, so by the pigeonhole principle there must
exist a value of i for which ai or bi is outside this range. If ai is out of range
then xi is part of an increasing sequence of length at least r, and if bi is out of
range then xi is part of a decreasing sequence of length at least s.

10.1 The Generalized Pigeonhole Principle
One may generalize the pigeonhole principle in the following way. If N objects
are placed into k boxes, then there is at least one box containing at least dN/ke
objects.

Theorem 10.3. Let X and Y be some sets. Then for any function f : |X| →
|Y | there are x1, . . . , x` ∈ X such that

• f(xi) = f(xj),

• xi 6= xj for any i 6= j ∈ [`], and

• ` ≥ d|X|/|Y |e

Exercise 10.1. Prove Theorem 10.3.

Using this theorem we can prove that if we draw 9 cards out of a deck
of cards, we are guaranteed that at least three of them are of the same suit.
Indeed, there are 4 suits and by pigeonhole principle if we put each card to one
out of four boxes according to their suit, one of the boxes should have at least
d9/4e = 3 cards.

Another example shows how the generalized pigeonhole principle can be
applied to an important part of combinatorics called Ramsey theory.

Assume that in a group of six people, each pair of individuals consists of
two friends or two enemies. One may prove that there are either three mutual
friends or three mutual enemies in the group.

Let A be one of the six people; of the five other people in the group, there
are either three or more who are friends of A, or three or more who are his
enemies A. This statements follows from the generalized pigeonhole principle
since when five objects are divided into two sets, one of the sets has at least
d5/2e = 3 elements. Without loss of generality we may suppose that B, C, and
D are friends of A. If any two of these three individuals are friends, then these
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two and A form a group of three mutual friends. Otherwise, B, C, and D form
a set of three mutual enemies.

End of The Chapter Exercises
10.2 Show that among any group of five (not necessarily consecutive) integers,

there are two with the same remainder when divided by 4.

10.3 Show that if there are 30 students in a class, then at least two have last
names that begin with the same letter.

10.4 Let n be a positive integer. Show that in any set of n consecutive integers
there is exactly one divisible by n.

10.5 Prove that for every integers a1, . . . , an there are k > 0 and ` ≥ 0 such

that k + ` ≤ n and
k+∑̀
i=k

ai is divisible by n.

10.6 Let S ⊆ [20] be a set. Show that if |S| ≥ 13, then there are a, b ∈ S such
that a− b = 6.

10.7 How many numbers must be selected from the set [6] to guarantee that at
least one pair of these numbers add up to 7?

10.8 Sasha is training for a triathlon. Over a 30 day period, he pledges to train
at least once per day, and 45 times in all. Then there will be a period of
consecutive days where he trains exactly 14 times.

10.9 Show that among any n+ 1 positive integers not exceeding 2n there must
be an integer that divides one of the other integers.

10.10 Let a1, a2, . . . , at be positive integers. Show that if a1 +a2 + · · ·+at−t+1
objects are placed into t boxes, then for some i ∈ [t], the ith box contains
at least ai objects.

10.11 Let {(x1, y1), . . . , (x5, y5)} ⊆ Z2 be a set of five distinct points with integer
coordinates in the xy plane. Show that the midpoint of the line joining at
least one pair of these points has integer coordinates.
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