\qquad

Pid: \qquad

Show all of your work. Full credit will be given only for answers with explanations.

1. (50 points) Check all the correct statements.

The tangent plane of the funciton $f(x, y)=x e^{y}+y e^{x}$ at $(1,1,2 e)$ is defined by the equation

$$
2 e x+2 e y=z+2 e
$$

\bigcirc The angle between $\frac{\partial f(\pi, 0)}{\partial x}$ and $\frac{\partial f(\pi, 0)}{\partial y}$ is $\pi / 2$, where $f(x, y)=\langle\cos (x)+\sin (y), \sin (x)+\cos (y)\rangle$.If $z=x^{2}+y^{2}, x=\sin (t)$, and $y=\cos (t)$, then $\frac{d z}{d t}=0$The tangent planes of $f(x, y)=x^{2}+y^{2}$ at $(1,0,1)$ and $(0,1,1)$ are parallel.The vector $\langle 1,-1,1\rangle$ is perpendicular to $\frac{d f(\pi)}{d t}$ and $\frac{d f(\pi / 2)}{d t}$, where $f(t)=\langle\cos (t), \sin (t), t\rangle$.

Solution:

- First of all we need to compute the partial derivatives of $f, \frac{\partial f}{\partial x}=e^{y}+y e^{x}$ and $\frac{\partial f}{\partial y}=x e^{y}+e^{x}$. If $x=1$ and $y=1$, then $\frac{\partial f}{\partial x}=2 e$ and $\frac{\partial f}{\partial y}=2 e$. As a result the tangent plane is $2 e(x-1)+$ $2 e(y-1)=z-2 e$ which can be simplified to $2 e x+2 e y=z+2 e$.
- Let us first find explicitly the derivatives, $\frac{\partial f}{\partial x}=\langle-\sin (x), \cos (x)\rangle$ and $\frac{\partial f}{\partial y}=\langle\cos (y),-\sin (x)\rangle$. At point $(\pi, 0)$ the value of the derivatives are equal to $\langle 0,-1\rangle$ and $\langle 1,0\rangle$. The angle between these vectors is $\frac{\pi}{2}$.
- Note that $x^{2}+y^{2}=\cos ^{2}(t)+\sin ^{2}(t)$ which is equal to 1 for any t. Hence, $z=1$ and $\frac{d z}{d t}=0$.
- We need to find the partial derivatives of $f, \frac{\partial f}{\partial x}=2 x$ and $\frac{\partial f}{\partial y}=2 y$. Hence, the tangent planes for this surface are $z-1=2(x-1)$ and $z-1=2(y-1)$ and they are not parallel.
- Let us find the derivative if $f, \frac{d f}{d t}=\langle-\sin (t), \cos (t), 1\rangle$. Hence, $\frac{d f(\pi)}{d t}=\langle 0,-1,1\rangle$ and $\frac{d f(\pi / 2)}{d t}=$ $\langle-1,0,1\rangle$. Since $\langle 1,-1,1\rangle \cdot\langle 0,-1,1\rangle=2$ they are not perpendicular.

2. Let $r=\left\langle x^{y}, y^{x}\right\rangle$, where $x=e^{t}$, and $y=t^{2}$.
(a) (5 points) Find $\frac{d r}{d t}$.

Solution: First of all, we need to find $\frac{d x^{y}}{d t}$ and $\frac{d y^{x}}{d t}$.

$$
\begin{aligned}
& \frac{d x^{y}}{d t}=\frac{\partial x^{y}}{\partial x} \frac{d x}{d t}+\frac{\partial x^{y}}{\partial y} \frac{d y}{d t}=\left(y x^{y-1}\right) \cdot e^{t}+\left(x^{y} \ln x\right) \cdot 2 t \\
& \frac{d y^{x}}{d t}=\frac{\partial y^{x}}{\partial x} \frac{d x}{d t}+\frac{\partial y^{x}}{\partial y} \frac{d y}{d t}=\left(y^{x} \ln y\right) \cdot e^{t}+\left(x y^{x-1}\right) \cdot 2 t
\end{aligned}
$$

As a result,

$$
\frac{d r}{d t}=\left\langle\left(y x^{y-1}\right) \cdot e^{t}+\left(x^{y} \ln x\right) \cdot 2 t,\left(y^{x} \ln y\right) \cdot e^{t}+\left(x y^{x-1}\right) \cdot 2 t .\right\rangle
$$

(b) (5 points) Find the tangent line of the curve described by the vector function r for $t=1$

Solution: If $t=1$, then $x=e, y=1$, and $r=\langle e, 1\rangle$. Hence, $\frac{d r}{d t}=\left\langle 1 \cdot 1 \cdot e^{1}+(e \cdot 1) \cdot 2,1 \cdot 0\right.$. $e+(1 \cdot e) \cdot 2\rangle=\langle 3 e, 2 e\rangle$.
As a result, the answer is the line going throw $\langle e, 1\rangle$ with the slope $\frac{2 e}{3 e}$. Hence, the answer is $y=\frac{2}{3}(x-e)+1$.
3. Let $f(x, y)=x y^{2}+y x^{2}$.
(a) (5 points) Find the tangent planes to the surface defined by f at $(1,1,2)$ and $(-1,-1,-2)$.

Solution:

(b) (5 points) Check if these planes are intersectin; if they are intersecting, find symmetric equations for the line of intersection of the planes.

Solution:

4. Let us consider a surfece defined implicitly by the equation $x^{3}+y^{3}+z^{3}+6 x y z=1$. Find the tangent plane of the surface at $(1,-3,-3)$.

Solution: Let us compute the partial derivative by x of both sides of the equality

$$
x^{3}+y^{3}+z^{3}+6 x y z=1
$$

, we get $3 x^{2}+3 z^{2} \frac{\partial z}{\partial x}+6 y z+6 x y \frac{\partial z}{\partial x}=0$. As a result, $\frac{\partial z}{\partial x}=-\frac{3 x^{2}+6 y z}{3 z^{2}+6 x y}$. Similarly, $\frac{\partial z}{\partial y}=-\frac{3 y^{2}+6 x z}{3 z^{2}+6 x y}$.
Since $x=1, y=-3$, and $z=-3$, we may find the values of the partial derivatives: $\frac{\partial z}{\partial x}=-\frac{3+6 \cdot 9}{27-6 \cdot 3}=$ $-\frac{57}{9}$ and $\frac{\partial z}{\partial y}=-\frac{27-6 \cdot 3}{27-6 \cdot 3}=-1$.
Therefore, the tangent plane to the surface is defined by the equation $z+3=-\frac{57}{9}(x-1)-(x+3)$.

