Name: _____

Pid: _____

Show all of your work. Full credit will be given only for answers with explanations.

- 1. (50 points) Check all the correct statements.
 - \bigcirc The tangent plane of the function $f(x,y) = xe^y + ye^x$ at (1,1,2e) is defined by the equation

$$2ex + 2ey = z + 2e.$$

- \bigcirc The angle between $\frac{\partial f(\pi,0)}{\partial x}$ and $\frac{\partial f(\pi,0)}{\partial y}$ is $\pi/2$, where $f(x,y) = \langle \cos(x) + \sin(y), \sin(x) + \cos(y) \rangle$.
- $\bigcirc~$ If $z=x^2+y^2,\,x=\sin(t),\,{\rm and}~y=\cos(t),\,{\rm then}~\frac{dz}{dt}=0$
- \bigcirc The tangent planes of $f(x, y) = x^2 + y^2$ at (1, 0, 1) and (0, 1, 1) are parallel.
- \bigcirc The vector $\langle 1, -1, 1 \rangle$ is perpendicular to $\frac{df(\pi)}{dt}$ and $\frac{df(\pi/2)}{dt}$, where $f(t) = \langle \cos(t), \sin(t), t \rangle$.

Solution:

- First of all we need to compute the partial derivatives of f, $\frac{\partial f}{\partial x} = e^y + ye^x$ and $\frac{\partial f}{\partial y} = xe^y + e^x$. If x = 1 and y = 1, then $\frac{\partial f}{\partial x} = 2e$ and $\frac{\partial f}{\partial y} = 2e$. As a result the tangent plane is 2e(x-1) + 2e(y-1) = z - 2e which can be simplified to 2ex + 2ey = z + 2e.
- Let us first find explicitly the derivatives, $\frac{\partial f}{\partial x} = \langle -\sin(x), \cos(x) \rangle$ and $\frac{\partial f}{\partial y} = \langle \cos(y), -\sin(x) \rangle$. At point $(\pi, 0)$ the value of the derivatives are equal to $\langle 0, -1 \rangle$ and $\langle 1, 0 \rangle$. The angle between these vectors is $\frac{\pi}{2}$.
- Note that $x^2 + y^2 = \cos^2(t) + \sin^2(t)$ which is equal to 1 for any t. Hence, z = 1 and $\frac{dz}{dt} = 0$.
- We need to find the partial derivatives of f, $\frac{\partial f}{\partial x} = 2x$ and $\frac{\partial f}{\partial y} = 2y$. Hence, the tangent planes for this surface are z 1 = 2(x 1) and z 1 = 2(y 1) and they are not parallel.
- Let us find the derivative if f, $\frac{df}{dt} = \langle -\sin(t), \cos(t), 1 \rangle$. Hence, $\frac{df(\pi)}{dt} = \langle 0, -1, 1 \rangle$ and $\frac{df(\pi/2)}{dt} = \langle -1, 0, 1 \rangle$. Since $\langle 1, -1, 1 \rangle \cdot \langle 0, -1, 1 \rangle = 2$ they are not perpendicular.

- 2. Let $r = \langle x^y, y^x \rangle$, where $x = e^t$, and $y = t^2$.
 - (a) (5 points) Find $\frac{dr}{dt}$.

Solution: First of all, we need to find $\frac{dx^y}{dt}$ and $\frac{dy^x}{dt}$.

$$\frac{dx^y}{dt} = \frac{\partial x^y}{\partial x}\frac{dx}{dt} + \frac{\partial x^y}{\partial y}\frac{dy}{dt} = (yx^{y-1}) \cdot e^t + (x^y \ln x) \cdot 2t$$
$$\frac{dy^x}{dt} = \frac{\partial y^x}{\partial x}\frac{dx}{dt} + \frac{\partial y^x}{\partial y}\frac{dy}{dt} = (y^x \ln y) \cdot e^t + (xy^{x-1}) \cdot 2t$$

As a result,

$$\frac{dr}{dt} = \langle (yx^{y-1}) \cdot e^t + (x^y \ln x) \cdot 2t, (y^x \ln y) \cdot e^t + (xy^{x-1}) \cdot 2t. \rangle$$

(b) (5 points) Find the tangent line of the curve described by the vector function r for t = 1

Solution: If t = 1, then x = e, y = 1, and $r = \langle e, 1 \rangle$. Hence, $\frac{dr}{dt} = \langle 1 \cdot 1 \cdot e^1 + (e \cdot 1) \cdot 2, 1 \cdot 0 \cdot e + (1 \cdot e) \cdot 2 \rangle = \langle 3e, 2e \rangle$. As a result, the answer is the line going throw $\langle e, 1 \rangle$ with the slope $\frac{2e}{3e}$. Hence, the answer is $y = \frac{2}{3}(x - e) + 1$.

3. Let $f(x, y) = xy^2 + yx^2$.

(a) (5 points) Find the tangent planes to the surface defined by f at (1,1,2) and (-1,-1,-2).

Solution:

(b) (5 points) Check if these planes are intersectin; if they are intersecting, find symmetric equations for the line of intersection of the planes.

Solution:

4. Let us consider a surface defined implicitly by the equation $x^3 + y^3 + z^3 + 6xyz = 1$. Find the tangent plane of the surface at (1, -3, -3).

Solution: Let us compute the partial derivative by x of both sides of the equality

$$x^3 + y^3 + z^3 + 6xyz = 1$$

, we get $3x^2 + 3z^2 \frac{\partial z}{\partial x} + 6yz + 6xy \frac{\partial z}{\partial x} = 0$. As a result, $\frac{\partial z}{\partial x} = -\frac{3x^2 + 6yz}{3z^2 + 6xy}$. Similarly, $\frac{\partial z}{\partial y} = -\frac{3y^2 + 6xz}{3z^2 + 6xy}$. Since x = 1, y = -3, and z = -3, we may find the values of the partial derivatives: $\frac{\partial z}{\partial x} = -\frac{3+6\cdot9}{27-6\cdot3} = -\frac{57}{9}$ and $\frac{\partial z}{\partial y} = -\frac{27-6\cdot3}{27-6\cdot3} = -1$.

Therefore, the tangent plane to the surface is defined by the equation $z + 3 = -\frac{57}{9}(x-1) - (x+3)$.