\qquad

Pid: \qquad

Show all of your work. Full credit will be given only for answers with explanations.

1. (100 points) Check all the correct statements.$u \cdot v=-7$, where $u=\langle 1,2,7\rangle$ and $v=\langle 4,-2,-1\rangle$.Length of the projection of the vector $\langle 2,2,7\rangle$ on the line going throw the vector $\langle 3,6,2\rangle$ is equal to $\frac{32}{49}$The angle between the vector $\langle 1,1,1\rangle$ and $\langle 1,1,0\rangle$ is equal to $\arccos \frac{2}{\sqrt{6}}$.$u \times v=w$, where $u=\langle 1,1,0\rangle, v=\langle 1,2,0\rangle$ and $w=\langle 1,-1,0\rangle$.The vector $\langle 1,3,5\rangle$ is the direction of the line defined by the equation

$$
\frac{x-1}{2}=\frac{y-3}{3}=\frac{z-5}{4} .
$$

Solution:

1. $u \cdot v=1 \cdot 4+2 \cdot(-2)+7 \cdot(-1)=4-4-7=7$. Hence, the statement is true.
2. Length of the projection of the vector $u=\langle 2,2,7\rangle$ on the line going throw the vector $v=$ $\langle 3,6,2\rangle$ is eual to $\frac{u \cdot v}{|v|}=\frac{2 \cdot 3+2 \cdot 6+7 \cdot 2}{\sqrt{3^{2}+6^{2}+2^{2}}}=\frac{32}{7}$. Hence, the statement is not true.
3. Let $u=\langle 1,1,1\rangle$ and $v=\langle 1,1,0\rangle$. Note that the angle between these two vectors is equal to $\arccos \frac{u \cdot v}{|u| \cdot|v|}=\frac{2}{\sqrt{3} \sqrt{2}}$. Hence, the statement is true.
4. $u \times v=(1 \cdot 0-2 \cdot 0) i-(1 \cdot 0-0 \cdot 0) j+(1 \cdot 2-1 \cdot 1) k=k$.
5. The statement is not true, since the denominators should be equal to the components of the direction of the line.
6. Let $A=\langle 2,0,0\rangle, B=\langle 0,4,0\rangle$.
(a) (10 points) Find a direction vector of the line that goes through the points A and B.

Solution: Note that the line goes in the direction $\overrightarrow{A B}=\langle-2,4,0\rangle$.
(b) (10 points) Find a parametric form of the line that goes through the points A and B.

Solution: The parametric form of a line is $r=r_{0}+t v$ where v is the dirrection and r_{0} is some point from the line. Hence, the parametric form of the line that goes throw the points A and B is $r=\langle-2 t, 4+4 t, 0\rangle$.
(c) (10 points) Find an equation of the line that goes through the points A and B.

Solution: The euqation of the line is $\left\{\begin{array}{l}-\frac{x}{2}=\frac{y-4}{4} \\ z=0\end{array}\right.$ since the parametric form of the line is $\langle x, y, z\rangle=\langle-2 t, 4+4 t, 0\rangle$.
3. (10 points) Find $u \times v$, where $u=\langle 1,1,0\rangle, v=\langle 1,0,1\rangle$

Solution: Note that $u=i+j$ and $v=i+k$. Hence, $u \times v=i \times k+j \times i+j \times k=-j-k+i=$ $\langle 1,-1,-1\rangle$.
4. Let $A=\langle 1,-1,2\rangle, B=\langle-1,0,1\rangle$, and $C=\langle 0,2,1\rangle$.
(a) (10 points) Find a vector n which is perpendicular to the plane that goes through the points A, B, and C.

Solution: Let $u=\overrightarrow{A B}=\langle-1-1,0+1,1-2\rangle=\langle-2,1,-1\rangle$ and $v=\overrightarrow{A C}=\langle 0-1,2+1,1-2\rangle=$ $\langle-1,3,-1\rangle$. Note that we just need to find a vector n that is perpendicular to both u and v. Recall that $u \times v$ is perpendicular to both u and v. Hence, may just choose $n=u \times v$. Hence, the result is $\langle-2,1,1\rangle \times\langle-1,3,-1\rangle=(1 \cdot(-1)-3 \cdot(-1)) i-((-2) \cdot(-1)-(-1) \cdot(-1)) j+$ $((-2) \cdot 3-1 \cdot(-1)) k=2 i-j-5 k=\langle 2,-1,-5\rangle$.
(b) (10 points) Find the equation of the plane passing through the points A, B, and C.

Solution: Note that a vector $v=\langle x, y, z\rangle$ is perpendicular to n iff $v \cdot n=0$. In other words a point P belongs to the plane iff $\overrightarrow{A P} \cdot n=0$. As a result, the equation of the plane is $2(x-1)-(y+1)-5 \cdot(z-2)=0$.

