Name: _____

Pid: _____

Show all of your work. Full credit will be given only for answers with explanations.

- 1. (50 points) Check all the correct statements.
 - \bigcirc The tangent plane of the function $f(x,y) = xe^y + ye^x$ at (1,1,2e) is defined by the equation

$$2ex + 2ey = z + 2e.$$

- $\bigcirc \text{ The angle between } \frac{\partial f(\pi,0)}{\partial x} \text{ and } \frac{\partial f(\pi,0)}{\partial y} \text{ is } \pi/2, \text{ where } f(x,y) = \langle \cos(x) + \sin(y), \sin(x) + \cos(y) \rangle.$
- \bigcirc If $z = x^2 + y^2$, $x = \sin(t)$, and $y = \cos(t)$, then $\frac{dz}{dt} = 0$
- $\bigcirc\,$ The tangent planes of $f(x,y)=x^2+y^2$ at (1,0,1) and (0,1,1) are parallel.
- \bigcirc The vector $\langle 1, -1, 1 \rangle$ is perpendicular to $\frac{df(\pi)}{dt}$ and $\frac{df(\pi/2)}{dt}$, where $f(t) = \langle \cos(t), \sin(t), t \rangle$.

2. Let $r = \langle x^y, y^x \rangle$, where $x = e^t$, and $y = t^2$. (a) (5 points) Find $\frac{dr}{dt}$.

(b) (5 points) Find the tangent line of the curve described by the vector function r for t = 1

3. Let $f(x, y) = xy^2 + yx^2$.

(a) (5 points) Find the tangent planes to the surface defined by f at (1, 1, 2) and (-1, -1, -2).

(b) (5 points) Check if these planes are intersectin; if they are intersecting, find symmetric equations for the line of intersection of the planes.

4. Let us consider a surface defined implicitly by the equation $x^3 + y^3 + z^3 + 6xyz = 1$. Find the tangent plane of the surface at (1, -3, -3).