Name:

Pid: $\qquad$

Show all of your work. Full credit will be given only for answers with explanations.

1. (50 points) Check all the correct statements.

The tangent plane of the funciton $f(x, y)=x e^{y}+y e^{x}$ at $(1,1,2 e)$ is defined by the equation

$$
2 e x+2 e y=z+2 e
$$The angle between $\frac{\partial f(\pi, 0)}{\partial x}$ and $\frac{\partial f(\pi, 0)}{\partial y}$ is $\pi / 2$, where $f(x, y)=\langle\cos (x)+\sin (y), \sin (x)+\cos (y)\rangle$.If $z=x^{2}+y^{2}, x=\sin (t)$, and $y=\cos (t)$, then $\frac{d z}{d t}=0$The tangent planes of $f(x, y)=x^{2}+y^{2}$ at $(1,0,1)$ and $(0,1,1)$ are parallel.The vector $\langle 1,-1,1\rangle$ is perpendicular to $\frac{d f(\pi)}{d t}$ and $\frac{d f(\pi / 2)}{d t}$, where $f(t)=\langle\cos (t), \sin (t), t\rangle$.

2. Let $r=\left\langle x^{y}, y^{x}\right\rangle$, where $x=e^{t}$, and $y=t^{2}$.
(a) (5 points) Find $\frac{d r}{d t}$.
(b) (5 points) Find the tangent line of the curve described by the vector function $r$ for $t=1$
3. Let $f(x, y)=x y^{2}+y x^{2}$.
(a) (5 points) Find the tangent planes to the surface defined by $f$ at $(1,1,2)$ and $(-1,-1,-2)$.
(b) (5 points) Check if these planes are intersectin; if they are intersecting, find symmetric equations for the line of intersection of the planes.
4. Let us consider a surfece defined implicitly by the equation $x^{3}+y^{3}+z^{3}+6 x y z=1$. Find the tangent plane of the surface at $(1,-3,-3)$.
