\qquad

Pid: \qquad

Show all of your work. Full credit will be given only for answers with explanations.

1. (10 points) Find the maximum and minimum values of $f(x, y)=4 x^{2}+10 y^{2}$ on the disk $x^{2}+y^{2} \leq 4$.

Solution: Let us find the critical points of $f(x, y), \frac{\partial f}{\partial x}=8 x$ and $\frac{\partial f}{\partial y}=20 y$ so the only critical point is $\langle 0,0\rangle$. The value at this point os 0 .
Let us now find the maximum and minimum on the border. Border of the disk is defined by the equation $x^{2}+y^{2}=4$. Hence, we need to solve the following system of equations:

$$
\begin{gathered}
8 x=\lambda 2 x \\
20 y=\lambda 2 y \\
x^{2}+y^{2}=4 .
\end{gathered}
$$

- If $x=0$, then $y=2$ and $\lambda=10$.
- If $x \neq 0$, then $\lambda=4$ and as a result, $y=0$. Hence, $x=2$.

As a result, the maximum is the maximum of $0,4 \cdot 0^{2}+10 \cdot 2^{2}$, and $4 \cdot 2^{2}+10 \cdot 0^{2}$ which is 40 . The minimum is the minimum of $0,4 \cdot 0^{2}+10 \cdot 2^{2}$, and $4 \cdot 2^{2}+10 \cdot 0^{2}$ which is 0 .
2. (10 points) Find $\iint_{R} x^{2}+y^{2}+x y d A$, where $R=[0,1] \times[1,2]$.

Solution: By Fubini's theorem the answer is equal to $\int_{0}^{1} \int_{1}^{2} x^{2}+y^{2}+x y d y d x$. Note that $\int_{1}^{2} x^{2}+y^{2}+$ $x y d y=x^{2} y+\frac{1}{3} y^{3}+\left.\frac{1}{2} x y^{2}\right|_{y=1} ^{y=2}=x^{2}+\frac{7}{3}+\frac{3}{2} x$. Hence, $\int_{0}^{1} \int_{1}^{2} x^{2}+y^{2}+x y d y d x=\int_{0}^{1} x^{2}+\frac{7}{3}+\frac{3}{2} x d x=$ $\frac{1}{3} x^{3}+\frac{7}{3} x+\left.\frac{3}{4} x^{2}\right|_{x=0} ^{x=1}=\frac{8}{3}+\frac{3}{4}$.
3. Consider the plane P with equation $z=6 x-3 y+2$.
(a) (10 points) Find the equation of a plane parallel to P and passing through the point $\langle 1,0,-1\rangle$.

Solution: The equation should be of the form $6 x-3 y-z=\ldots$ such that if we substitute $x=1, y=0, z=-1$ we get a true statement. Hence, the answer is $6 x-3 y-z=7$.
(b) (10 points) For which value of a is the vector $\langle-2,1, a\rangle$ normal to the plane?

Solution: The vector $\langle 6,-3,-1\rangle$ is a normal vector of P. Hence, the vector $\langle-2,1, a\rangle$ is normal to P iff there is a real number λ such that $\lambda\langle 6,-3,-1\rangle=\langle-2,1, a\rangle$. This is possible only when $\lambda=-\frac{1}{3}$ and $a=\frac{1}{3}$.
4. Let $f(x, y)=\sin (x)+\sin (y)$.
(a) (5 points) Find the tangent planes at $\langle\pi, \pi, 0\rangle$ and $\left\langle\frac{\pi}{2}, \frac{\pi}{2}, 2\right\rangle$.

Solution: First we need to find the partial derivatives of $f, \frac{\partial f}{\partial x}=\cos (x)$ and $\frac{\partial f}{\partial y}=\cos (y)$.
Hence, $\frac{\partial f}{\partial x}(\pi, \pi)=\frac{\partial f}{\partial y}(\pi, \pi)=-1$ and $\frac{\partial f}{\partial x}\left(\frac{\pi}{2}, \frac{\pi}{2}\right)=\frac{\partial f}{\partial y}\left(\frac{\pi}{2}, \frac{\pi}{2}\right)=0$.
As a result, the tangent planes are $z=-(x-\pi)-(y-\pi)$ and $z-2=0$.
(b) (5 points) Check if these planes are intersecting; if they are intersecting, find symmetric equations for the line of intersection of the planes.

Solution: We need to find the intersection of the planes. Note that if we substitute $z=2$ to the first equation we get $2-2 \pi=-x-y$. As a result a line defined by the equations

$$
\begin{gathered}
2-2 \pi+x=y \\
z=2
\end{gathered}
$$

is the intersection of the planes.
5. Let $f(x, y)=2 x y$ and $g(x, y)$ be the maximum value of $D_{u} f(x, y)$ over all unit vectors u.
(a) (10 points) Find the value of $g(1,3)$.

Solution: We proved in class that the maximum value of $D_{u} f(x, y)$ is equal to $|\nabla f(x, y)|$. In other words, $g(x, y)=|\nabla f(x, y)|$. Note that $\nabla f(x, y)=\langle 2 y, 2 x\rangle$. As a result, $g(x, y)=$ $2 \sqrt{x^{2}+y^{2}}$ and $g(1,3)=2 \sqrt{10}$.
(b) (10 points) Find and classify all the critical points of $g(x, y)$.

Solution: In order to find the critical points of g we need to find the partial derivatives, $\frac{\partial g}{\partial x}=\frac{2 x}{\sqrt{x^{2}+y^{2}}}$ and $\frac{\partial g}{\partial y}=\frac{2 y}{\sqrt{x^{2}+y^{2}}}$. We may note that $\frac{\partial g}{\partial x}(x, y)=0$ iff $x=0$ and $\frac{\partial g}{\partial y}=0$ iff $y=0$, but the derivatives are not defined at $\langle 0,0\rangle$. As a result, there are no critical points.
6. Let $r=\left\langle u+v, u+v^{2}, u^{2}+v\right\rangle$, where $u=\cos (x)+\cos (\pi \cdot y)$ and $v=\sin (x y)$.
(a) (5 points) Find $\frac{\partial r}{\partial x}$ and $\frac{\partial r}{\partial y}$.

Solution: Let us use the chain rule, $\frac{\partial r}{\partial x}=\frac{\partial r}{\partial u} \frac{\partial u}{x}+\frac{\partial r}{\partial v} \frac{\partial v}{x}=-\sin (x)\langle 1,1,2 u\rangle+y \cos (x y)\langle 1,2 v, 1\rangle$ and $\frac{\partial r}{\partial y}=\frac{\partial r}{\partial u} \frac{\partial u}{y}+\frac{\partial r}{\partial v} \frac{\partial v}{y}=-\pi \sin (\pi y)\langle 1,1,2 u\rangle+x \cos (x y)\langle 1,2 v, 1\rangle$.
(b) (5 points) Find the tangent plane of the surface described by the vector function r for $x=\frac{\pi}{3}$ and $y=1$.

Solution: If $x=\frac{\pi}{3}$ and $y=1$, then $u=\frac{1}{2}-1=-\frac{1}{2}$ and $v=\frac{\sqrt{3}}{2}$. Hence, $\frac{\partial r}{\partial x}=-\frac{\sqrt{3}}{2}\langle 1,1,-1\rangle+$ $\frac{1}{2}\langle 1, \sqrt{3}, 1\rangle=\frac{1}{2}\langle 1-\sqrt{3}, 0,1+\sqrt{3}\rangle$ and $\frac{\partial r}{\partial y}=\frac{\pi}{6}\langle 1, \sqrt{3}, 1\rangle$.
In order to find a normal vector to the plane we need to compute $\langle 1, \sqrt{3}, 1\rangle \times\langle 1-\sqrt{3}, 0,1+\sqrt{3}\rangle=$ $\langle 3+\sqrt{3},-2 \sqrt{3}, 3-\sqrt{3}\rangle$. Additionally, $r=\left\langle\frac{\sqrt{3}-1}{2}, \frac{3}{4}-\frac{1}{2}, \frac{\sqrt{3}}{2}+\frac{1}{4}\right\rangle$.
As a result, the answer is $0=(3+\sqrt{3})\left(x-\frac{\sqrt{3}-1}{2}\right)-2 \sqrt{3}\left(y-\frac{3}{4}+\frac{1}{2}\right)+(3-\sqrt{3})\left(z-\frac{\sqrt{3}}{2}-\frac{1}{4}\right)$.
7. (10 points) Find the linear approximation of the function $f(x, y)=x^{2}+y x$ at $\langle 1,-1\rangle$.

Solution: Let us compute the partial derivatives, $\frac{\partial f}{\partial x}=2 x+y$ and $\frac{\partial f}{\partial y}=x$. Hence, $\frac{\partial f}{\partial x}(1,-1)=1$ and $\frac{\partial f}{\partial y}(1,-1)=1$.
As a result the linear approximation of f at $\langle 1,-1\rangle$ is equal to $(x-1)+(y+1)$ since $f(1,-1)=0$.

