Name:

Pid: \qquad

Show all of your work. Full credit will be given only for answers with explanations.

1. (10 points) Find the maximum and minimum values of $f(x, y)=4 x^{2}+10 y^{2}$ on the disk $x^{2}+y^{2} \leq 4$.
2. (10 points) Find $\iint_{R} x^{2}+y^{2}+x y d A$, where $R=[0,1] \times[1,2]$.
3. Consider the plane P with equation $z=6 x-3 y+2$.
(a) (10 points) Find the equation of a plane parallel to P and passing through the point $\langle 1,0,-1\rangle$.
(b) (10 points) For which value of a is the vector $\langle-2,1, a\rangle$ normal to the plane?
4. Let $f(x, y)=\sin (x)+\sin (y)$.
(a) (5 points) Find the tangent planes at $\langle\pi, \pi, 0\rangle$ and $\left\langle\frac{\pi}{2}, \frac{\pi}{2}, 2\right\rangle$.
(b) (5 points) Check if these planes are intersecting; if they are intersecting, find symmetric equations for the line of intersection of the planes.
5. Let $f(x, y)=2 x y$ and $g(x, y)$ be the maximum value of $D_{u} f(x, y)$ over all unit vectors u.
(a) (10 points) Find the value of $g(1,3)$.
(b) (10 points) Find and classify all the critical points of $g(x, y)$.
6. Let $r=\left\langle u+v, u+v^{2}, u^{2}+v\right\rangle$, where $u=\cos (x)+\cos (\pi \cdot y)$ and $v=\sin (x y)$.
(a) (5 points) Find $\frac{\partial r}{\partial x}$ and $\frac{\partial r}{\partial y}$.
(b) (5 points) Find the tangent plane of the surface described by the vector function r for $x=\frac{\pi}{3}$ and $y=1$.
7. (10 points) Find the linear approximation of the function $f(x, y)=x^{2}+y x$ at $\langle 1,-1\rangle$.
