Name:

Pid: \qquad

1. Prove that $1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots+\frac{1}{n^{2}} \leq 2$.

Solution: Let us prove a stronger statement:

$$
1+\frac{1}{2^{2}}+\cdots+\frac{1}{n^{2}} \leq 2-\frac{1}{n}
$$

The base case is clear. We prove now the induction step. By the induction hypothesis the following inequality holds

$$
1+\frac{1}{2^{2}}+\cdots+\frac{1}{(n-1)^{2}} \leq 2-\frac{1}{n-1}
$$

Hence,

$$
1+\frac{1}{2^{2}}+\cdots+\frac{1}{n^{2}} \leq 2-\frac{1}{n-1}+\frac{1}{n^{2}}=2
$$

but $\frac{1}{n-1}-\frac{1}{n^{2}} \geq \frac{1}{n}$. Indeed, $\frac{1}{n-1} \geq \frac{n+1}{n^{2}}$ is equivalent to $\frac{1}{(n-1)^{2}} \geq \frac{1}{n^{2}}$ wcich is true. As a result we proved the induction step.
2. Show that $(1+x)^{n} \geq 1+n x$ for every $n \in \mathbb{N}$ and $x \geq-1$.

Solution: We are going to prove that by induction by n.
The induction step is clear. We prove now the induction step. Assume the induction hypothesis: $(1+x)^{n} \geq 1+n x$. Note that $(1+x)^{n+1} \geq(1+n x) \cdot(1+x)=1+n x+x+n x^{2} \geq 1+(n+1) x$. Which proves the induction step.
3. There are irrational numbers a and b such that a^{b} is rational.

Solution: Assume that a^{b} is irrational for all irrationals a and b. Since $\sqrt{2}$ is irrational $\sqrt{2}^{\sqrt{2}}$ is also irrational. However, $\left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}}=\sqrt{2}^{2}=2$, which contradicts to the assumption. As a result, there are irrational a and b such that a^{b} is rational.
4. If $a, b \in \mathbb{Z}$, then $a^{2}-4 b+2 \neq 0$.

Solution: Assume, for the sake of contradiction, that such a and b exist. Note that $a^{2}=4 b+2$, hence, a is even but a is not divisible for 4 which is a contradiction.

