\qquad

Pid: \qquad

1. (50 points) Check all the correct statements (in this question only the answers will be graded).
$\bigcirc \operatorname{gcd}(24,18)=6$.The function $f:\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \rightarrow \mathbb{R}$ such that $f(x)=\arctan x$ is a bijection.The cardinality of the set $F(X,[3])=\left(4^{n}\right)^{3}$, where $X=F([4],[n])$.The cardinality of the set $I([3],[n])=n(n-1)(n-2)$.
$\bigcirc\binom{10}{2}=90$.

Solution:

1. Note that $D(24)=\{1,2,3,4,6,8,12,24\}$ and $D(18)=\{1,2,3,6,9,18\}$. Hence, $\operatorname{gcd}(24,18)=$ 6.
2. No it is not a bijection since arctan is increasing function, hence, the value of $\operatorname{Im} f \subseteq$ $\left[f\left(-\frac{\pi}{2}\right), f\left(\frac{\pi}{2}\right)\right]$.
3. The cardianality of the set $X=F([4],[n])$ is equal to n^{4}, hence, the cardinality of the set $F(X,[3])$ is equal to $3^{n^{4}}$.
4. $\binom{10}{2}=\frac{10 \cdot 9}{2 \cdot 1}=45$.
5. (a) (5 points) Let n, a, and b be some integers. Show that if two numbers a and b have the same reminders when divided by n, then $a-b$ is divisible by n.

Solution: There are integers k, ℓ and r such that $a=k n+r$ and $a=\ell n+r$ since a and b have the same reminder when divided by n.
Note that $a-b=(k-\ell) n$, hence, is divisible by n.
(b) (5 points) Prove that for every integers a_{1}, \ldots, a_{n} there are $k>0$ and $\ell \geq 0$ such that $k+\ell \leq n$ and $\sum_{i=k}^{k+\ell} a_{i}$ is divisible by n.

Solution: Let us consider the function $f:\{0,1, \ldots, n\} \rightarrow\{0,1, \ldots, n-1\}$ such that $f(i)$ is equal to the reminder of $\sum_{j=1}^{i} a_{j}$ (if $i<1$, the sum is equal to 0) when divided by n. By the pigeonhole prinnciple there are $i_{0}<i_{1}$ such that $f\left(i_{0}\right)=f\left(i_{1}\right)$; hence, $f\left(i_{1}\right)-f\left(i_{0}\right)=$ $\sum_{j=1}^{i_{1}} a_{j}-\sum_{j=1}^{i_{0}} a_{j}=\sum_{j=i_{0}+1}^{i_{1}} a_{j}$ is divisible by n.
3. (10 points) We say that sets A_{1}, A_{2}, and A_{3} are pairwise disjoint iff $A_{i} \cap A_{j}=\emptyset$ for every $i \neq j \in[3]$. Construct a bijection from $\{0,1,2,3\}^{n}$ to $\{(A, B, C) \mid A, B, C \subseteq[n]$ and A, B, C are pairwise disjoint $\}$

Solution: Let us consider the function $f:\{0,1,2,3\}^{n} \rightarrow\{(A, B, C) \mid A, B, C$ [n] and A, B, C are pairwise disjoint $\}$ such that $f\left(x_{1}, \ldots, x_{n}\right)=\left(A_{x}, B_{x}, C_{x}\right)$, where $A_{x}=\{i \in$ $\left.[n] \mid x_{i}=1\right\}, B_{x}=\left\{i \in[n] \mid x_{i}=2\right\} C_{x}=\left\{i \in[n] \mid x_{i}=3\right\}$.
It is easy to see that the function is a bijection since we may define the inverse of this function e : $\{(A, B, C) \mid A, B, C \subseteq[n]$ and A, B, C are pairwise disjoint $\} \rightarrow\{0,1,2,3\}^{n}$ such that $e(A, B, C)=$ $\left(x_{1}, \ldots, x_{n}\right)$, where $x_{i}=\left\{\begin{array}{ll}1 & \text { if } i \in A \\ 2 & \text { if } i \in B \\ 3 & \text { if } i \in C \\ 0 & \text { otherwise }\end{array}\right.$.

- Let $f(e(A, B, C))=\left(A^{\prime}, B^{\prime}, C^{\prime}\right)$ and $e(A, B, C)=\left(x_{1}, \ldots, x_{n}\right)$. Note that $x_{i}=1$ iff $i \in A$ and $i \in A^{\prime}$ iff $x_{i}=1$; hence $i \in A$ iff $i \in A^{\prime}$. In other words, $A=A^{\prime}$. Similarly we may consider other cases (we use the fact that A, B, and C to show that constraints in the definition of e cannot be satisfied simultaneosly).
- Let $e\left(f\left(x_{1}, \ldots, x_{n}\right)\right)=\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)$ and $f\left(x_{1}, \ldots, x_{n}\right)=(A, B, C)$. Note that $i \in A$ iff $x_{i}=1$ and $x_{i}^{\prime}=1$ iff $i \in A$; hence $x_{i}=1$ iff $x_{i}^{\prime}=1$. Similarly we may prove for 0,2 , and 3 and as a result, we proved that $x_{i}=x_{i}^{\prime}$.

4. (10 points) How many numbers from [999] are not divisible neither by 3 , nor by 5 , nor by 7 .

Solution: Let $S_{n}=\{i \in[999] \mid i$ is divisible by n $\}$. Note that $S_{3} \cap S_{5}=S_{15}, S_{3} \cap S_{7}=S_{21}$, $S_{5} \cap S_{7}=S_{35}$, and finally, $S_{3} \cap S_{5} \cap S_{7}=S_{105}$. Additinally, $\left|S_{3}\right|=999 / 3=333,\left|S_{5}\right|=\lfloor 999 / 5\rfloor=199$, $\left|S_{7}\right|=\lfloor 999 / 7\rfloor=142,\left|S_{1} 5\right|=\lfloor 999 / 15\rfloor=66,\left|S_{21}\right|=\lfloor 999 / 21\rfloor=47,\left|S_{35}\right|=\lfloor 999 / 35\rfloor=$ 28 , and $\left|S_{105}\right|=\lfloor 999 / 105\rfloor=9$. As a result, by the inclusion-exclusion principle, the answer is $999-333-199-142+66+47+28-9=457$.
5. (10 points) Let m be some integer. Show that product of m consecutive integers is divisible by m !.

Solution: In other words we need to show that for any integer $n, \frac{n \cdot(n+1) \cdots \cdots \cdot(n+m-1)}{m!}$ is an integer. But one may notice that $\frac{n \cdot(n+1) \cdots \cdots \cdot(n+m-1)}{m!}=\binom{n+m-1}{m}$ which is an integer.

