Name:

Pid: \qquad

1. (50 points) Check all the correct statements (in this question only the answers will be graded). $\bigcirc \operatorname{gcd}(24,18)=6$.The function $f:\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \rightarrow \mathbb{R}$ such that $f(x)=\arctan x$ is a bijection.The cardinality of the set $F(X,[3])=\left(4^{n}\right)^{3}$, where $X=F([4],[n])$.The cardinality of the set $I([3],[n])=n(n-1)(n-2)$.
$\bigcirc\binom{10}{2}=90$.
2. (a) (5 points) Let n, a, and b be some integers. Show that if two numbers a and b have the same reminders when divided by n, then $a-b$ is divisible by n.
(b) (5 points) Prove that for every integers a_{1}, \ldots, a_{n} there are $k>0$ and $\ell \geq 0$ such that $k+\ell \leq n$ and $\sum_{i=k}^{k+\ell} a_{i}$ is divisible by n.
3. (10 points) We say that sets A_{1}, A_{2}, and A_{3} are pairwise disjoint iff $A_{i} \cap A_{j}=\emptyset$ for every $i \neq j \in[3]$. Construct a bijection from $\{0,1,2,3\}^{n}$ to $\{(A, B, C) \mid A, B, C \subseteq[n]$ and A, B, C are pairwise disjoint $\}$
4. (10 points) How many numbers from [999] are not divisible neither by 3 , nor by 5 , nor by 7 .
5. (10 points) Let m be some integer. Show that product of m consecutive integers is divisible by m !.
