Name:

Pid: \qquad

1. (10 points) Show that the set $\{0,1\} \times[n]$ has cardinality $2 n$.
2. (10 points) Let us consider group theory, it is a theory with undefined terms: group-element and times (if a and b are group elements, we denote a times b by $a \cdot b$), and axioms:
3. $(a \cdot b) \cdot c=a \cdot(b \cdot c)$ for every group-elements a, b, and c;
4. there is a unique group-element e such that $e \cdot a=a=a \cdot e$ for every group-element a (we say that such an element is the identity element);
5. for every group-element a there is a group-element b such that $a \cdot b=e$, where e is the identoty element;
6. for every group-element a there is a group-element b such that $b \cdot a=e$, where e is the identoty element.

Let e be the identoty element. Show the following statements

- if $b_{0} \cdot a=b_{1} \cdot a=e$, then $b_{0}=b_{1}$, for every group-elements a, b_{0}, and b_{1}.
- if $a \cdot b_{0}=a \cdot b_{1}=e$, then $b_{0}=b_{1}$, for every group-elements a, b_{0}, and b_{1}.
- if $a \cdot b_{0}=b_{1} \cdot a=e$, then $b_{0}=b_{1}$, for every group-elements a, b_{0}, and b_{1}.

