Complexity of distributions and average-case hardness

Authors:

Dmitry Itsykson, Alexander Knop, Dmitry Sokolov

Institute:

St. Petersburg Department of V.A. Steklov Institute of Mathematics of the Russian Academy of Sciences

Definitions

SAMPLABLE DISTRIBUTIONS

Ensemble of distributions $D \in \operatorname{Samp}\left(n^{k}\right)$ iff there is a randomized $O\left(n^{k}\right)$-time algorithm A such that D_{n} and $A\left(1^{n}\right)$ are equally distributed.
We also denote PSamp $=\bigcup_{k} \operatorname{Samp}\left(n^{k}\right)$.

HEURISTIC COMPUTATIONS

Distributional problem $(L, D) \in$ Heur_DTime $\left(n^{k}\right)$ iff there is $O\left(n^{k}\right)$-time
algorithm A such that

Additionally denote $\operatorname{Heur}_{\delta} \mathbf{P}=\bigcup \operatorname{Heur}_{\delta} \mathbf{D T i m e}\left(n^{k}\right)$

Definitions

SAMPLABLE DISTRIBUTIONS

Ensemble of distributions $D \in \operatorname{Samp}\left(n^{k}\right)$ iff there is a randomized $O\left(n^{k}\right)$-time algorithm A such that D_{n} and $A\left(1^{n}\right)$ are equally distributed.
We also denote $\mathbf{P S a m p}=\bigcup_{k} \operatorname{Samp}\left(n^{k}\right)$.

HEURISTIC COMPUTATIONS

Distributional problem $(L, D) \in \operatorname{Heur} \delta \mathbf{D T i m e}\left(n^{k}\right)$ iff there is $O\left(n^{k}\right)$-time algorithm A such that

$$
\forall n \in \mathbb{N} \operatorname{Pr}_{x \leftarrow D_{n}}[A(x)=L(x)]>1-\delta .
$$

Additionally denote $\operatorname{Heur}_{\delta} \mathbf{P}=\bigcup_{k} \operatorname{Heur}_{\delta} \mathbf{D T i m e}\left(n^{k}\right)$.

Hamiltonian Path

GUREVICH AND SHELAH, 1987

Let HP denote the language of Hamiltonian graphs. Then $(H P, U) \in \operatorname{Heur} \frac{1}{2 O(\sqrt{n})}$ DTime (n).

Find polynomial-time algorithm for HP.

Hamiltonian Path

GUREVICH AND SHELAH, 1987

Let HP denote the language of Hamiltonian graphs. Then $(H P, U) \in \operatorname{Heur}_{\frac{1}{2 O(\sqrt{n})}}$ DTime (n).

OPEN PROBLEM

Find polynomial-time algorithm for HP.

Graph Isomorphism

BABAI, ERDOS AND SELKOW, 1980

Let GI denote the language of pairs of isomorphic graphs. Then $(\mathrm{GI}, U) \in \operatorname{Heur}_{\frac{1}{\sqrt[1]{n}}}$ DTime (n).

OPEN PROBLEM

Find polynomial-time algorithm for GI.

Graph Isomorphism

BABAI, ERDOS AND SELKOW, 1980

Let Gl denote the language of pairs of isomorphic graphs. Then $(\mathrm{GI}, U) \in$ Heur $_{\frac{1}{\sqrt[7]{n}}}$ DTime (n).

OPEN PROBLEM

Find polynomial-time algorithm for GI.

Goal and Result

RESULT

There are a language L and ensemble D such that

(2) $(L, D) \notin$ Heur $^{\circ}$
(3) for every $R \in$ PSamp we have that
(L. R) B Heur

DTime (n)

Goal and Result

GOAL

For every k there are a language L, ensemble D and small δ such that

RESULT

There are a language L and ensemble D such that

1) $D \in S=\operatorname{Sinnan}$
2) $(L, D) \notin$ Heur 2
(3) for every $R \in$ PSamp we have that

Goal and Result

GOAL

For every k there are a language L, ensemble D and small δ such that
(1) $D \in \mathbf{P S a m p}$;
$2)(L, D) \notin$ Heur $_{1-\delta P \text {; }}$
3) for every $R \in \operatorname{Samp}\left(n^{k}\right)$ we have that $(L, R) \in$ Heur $_{\delta}$ DTime (n).

RESULT

There are a language L and ensemble D such that

1) $n=0$ ampanan
2) $(L, D) \notin$ Heur 2
(3) for every $R \in$ PSamp we have
$(L, R) \in$ Heur
DTime (n)

Goal and Result

GOAL

For every k there are a language L, ensemble D and small δ such that
(1) $D \in \mathbf{P S a m p}$;
(2) $(L, D) \notin \operatorname{Heur}_{1-\delta} \mathbf{P}$;

3
for every $R \in \operatorname{Samp}\left(n^{k}\right)$ we have that $(L, R) \in \operatorname{Heur}_{\delta}$ DTime (n).

RESULT

There are a language L and ensemble D such that

1) $D \in S=\operatorname{Sip} \square \square$
2) $(L, D) \notin$ Heur $_{1}$
3) for every $R \in$ PSamp we have

Goal and Result

GOAL

For every k there are a language L, ensemble D and small δ such that
(1) $D \in \mathbf{P S a m p}$;
(2) $(L, D) \notin \operatorname{Heur}_{1-\delta} \mathbf{P}$;
(3) for every $R \in \operatorname{Samp}\left(n^{k}\right)$ we have that $(L, R) \in \operatorname{Heur}_{\delta} \mathbf{D T i m e}(n)$.

RESULT

There are a language L and ensemble D such that
(1) $n=$-ampana

(3) for every $R \in$ PSamp we have

Goal and Result

GOAL

For every k there are a language L, ensemble D and small δ such that
(1) $D \in \mathbf{P S a m p}$;
(2) $(L, D) \notin \operatorname{Heur}_{1-\delta} \mathbf{P}$;
(3) for every $R \in \boldsymbol{\operatorname { S a m p }}\left(n^{k}\right)$ we have that $(L, R) \in \operatorname{Heur}_{\delta}$ DTime (n).

RESULT

There are a language L and ensemble D such that

\qquad

Goal and Result

GOAL

For every k there are a language L, ensemble D and small δ such that
(1) $D \in \mathbf{P S a m p}$;
(2) $(L, D) \notin \operatorname{Heur}_{1-\delta} \mathbf{P}$;
(3) for every $R \in \boldsymbol{\operatorname { S a m p }}\left(n^{k}\right)$ we have that $(L, R) \in \operatorname{Heur}_{\delta} \mathbf{D T i m e}(n)$.

RESULT

There are a language L and ensemble D such that
(1) $D \in \operatorname{Samp}\left(n^{\log n}\right)$;

2
(3) for every $R \in$ PSamp we have

Goal and Result

GOAL

For every k there are a language L, ensemble D and small δ such that
(1) $D \in \mathbf{P S a m p}$;
(2) $(L, D) \notin \operatorname{Heur}_{1-\delta} \mathbf{P}$;
(3) for every $R \in \operatorname{Samp}\left(n^{k}\right)$ we have that $(L, R) \in \operatorname{Heur}_{\delta} \mathbf{D T i m e}(n)$.

RESULT

There are a language L and ensemble D such that
(1) $D \in \mathbf{S a m p}\left(n^{\log n}\right)$;
(2) $(L, D) \notin$ Heur $_{1-\frac{1}{2 \log \log \log n}} \mathbf{P}$;

Goal and Result

GOAL

For every k there are a language L, ensemble D and small δ such that
(1) $D \in \mathbf{P S a m p}$;
(2) $(L, D) \notin \operatorname{Heur}_{1-\delta} \mathbf{P}$;
(3) for every $R \in \operatorname{Samp}\left(n^{k}\right)$ we have that $(L, R) \in \operatorname{Heur}_{\delta} \mathbf{D T i m e}(n)$.

RESULT

There are a language L and ensemble D such that
(1) $D \in \mathbf{S a m p}\left(n^{\log n}\right)$;
(2) $(L, D) \notin$ Heur $_{1-\frac{1}{2^{\log \log \log n}}} \mathbf{P}$;
(3) for every $R \in \mathbf{P S a m p}$ we have that

$$
(L, R) \in \text { Heur } \frac{1}{2^{\log \log \log n}} \text { DTime }(n) \text {. }
$$

Equivalent reformulations

DISTRIBUTIONAL PROBLEMS

Functions f and g satisfy CD property with parameters $\alpha(n)>0$ and $\beta(n)>0$ $\left(\mathrm{CD}_{\alpha(n), \beta(n)}(f(n), g(n))\right)$ if there are $D \in \operatorname{Samp}(f(n))$ and L such that
(1) $(L, F) \in \operatorname{Heur}_{\alpha(n)} \mathbf{P}$ for every $F \in \operatorname{Samp}(g(n))$.
(2) $(L, D) \notin \operatorname{Heur}_{1-\beta(n)} \mathbf{P}$.

Equivalent reformulations

DISTRIBUTIONAL PROBLEMS

Functions f and g satisfy CD property with parameters $\alpha(n)>0$ and $\beta(n)>0$ $\left(\mathrm{CD}_{\alpha(n), \beta(n)}(f(n), g(n))\right)$ if there are $D \in \operatorname{Samp}(f(n))$ and L such that
(1) $(L, F) \in \operatorname{Heur}_{\alpha(n)} \mathbf{P}$ for every $F \in \operatorname{Samp}(g(n))$.
(2) $(L, D) \notin \operatorname{Heur}_{1-\beta(n)} \mathbf{P}$.

SAMPLING DISTRIBUTIONS

Functions f and g satisfy SD property with parameter $\lambda(n)\left(\operatorname{SD}_{\lambda(n)}(f(n), g(n))\right)$ if there is $D \in \operatorname{Samp}(f(n))$ such that for every $F \in \operatorname{Samp}(g(n))$, for infinitely many n the statistical distance between D_{n} and F_{n} is at least $1-\lambda(n)$.

Equivalent reformulations

$1 \rightarrow 2$

If $\mathrm{CD}_{\alpha(n), \beta(n)}(f(n), g(n))$ then $\mathrm{SD}_{\alpha(n)+\beta(n)}(f(n), g(n))$.

Equivalent reformulations

```
1->2
```

If $\mathrm{CD}_{\alpha(n), \beta(n)}(f(n), g(n))$ then $\mathrm{SD}_{\alpha(n)+\beta(n)}(f(n), g(n))$.
$2 \rightarrow 1$

If $\mathrm{SD}_{\lambda(n)}(f(n), g(n) \log g(n))$ then $\mathrm{CD}_{\omega(\lambda(n)), \lambda(n)}(f(n), g(n))$.

Samplable distributions hierarchy

WATSON, 2013

For any $a>0, k>0$ and $\epsilon>0$ there is $D \in$ PSamp such that for every $F \in \operatorname{Samp}\left(n^{a}\right)$, for infinitely many n the statistical distance between D_{n} and F_{n} is at least $1-\frac{1}{k}-\epsilon$.

ITSYKSON, KNOP, SOKOLOV, 2015

For every a, b, c such that $0<a<b$ and $c>0$ there is $D \in \operatorname{Samp}(n$ such that for every $F \in \operatorname{Samp}\left(n^{\log ^{9} n}\right)$, for infinitely many n the statistical distance between D_{n} and F_{n} is at least 1In previous notation: $S D$

Samplable distributions hierarchy

WATSON, 2013

For any $a>0, k>0$ and $\epsilon>0$ there is $D \in$ PSamp such that for every $F \in \operatorname{Samp}\left(n^{a}\right)$, for infinitely many n the statistical distance between D_{n} and F_{n} is at least $1-\frac{1}{k}-\epsilon$.
In previous notation: $\mathrm{SD}_{\frac{1}{k}+\epsilon}\left(\operatorname{poly}(n), n^{k}\right)$.

Samplable distributions hierarchy

WATSON, 2013

For any $a>0, k>0$ and $\epsilon>0$ there is $D \in$ PSamp such that for every $F \in \operatorname{Samp}\left(n^{a}\right)$, for infinitely many n the statistical distance between D_{n} and F_{n} is at least $1-\frac{1}{k}-\epsilon$.
In previous notation: $\mathrm{SD}_{\frac{1}{k}+\epsilon}\left(\right.$ poly $\left.(n), n^{k}\right)$.

ITSYKSON, KNOP, SOKOLOV, 2015

For every a, b, c such that $0<a<b$ and $c>0$ there is $D \in \operatorname{Samp}\left(n^{\log ^{b} n}\right)$ such that for every $F \in \operatorname{Samp}\left(n^{\log ^{2} n}\right)$, for infinitely many n the statistical distance between D_{n} and F_{n} is at least $1-\frac{1}{2^{(\log \log \log n)^{c}}}$.

Samplable distributions hierarchy

WATSON, 2013

For any $a>0, k>0$ and $\epsilon>0$ there is $D \in \mathbf{P S a m p}$ such that for every $F \in \operatorname{Samp}\left(n^{a}\right)$, for infinitely many n the statistical distance between D_{n} and F_{n} is at least $1-\frac{1}{k}-\epsilon$.
In previous notation: $\mathrm{SD}_{\frac{1}{k}+\epsilon}\left(\operatorname{poly}(n), n^{k}\right)$.

ITSYKSON, KNOP, SOKOLOV, 2015

For every a, b, c such that $0<a<b$ and $c>0$ there is $D \in \operatorname{Samp}\left(n^{\log ^{b} n}\right)$ such that for every $F \in \operatorname{Samp}\left(n^{\log ^{a} n}\right)$, for infinitely many n the statistical distance between D_{n} and F_{n} is at least $1-\frac{1}{2^{(\log \log \log n)^{c}}}$.
In previous notation: $\mathrm{SD}_{\frac{1}{2^{(\log \log \log n)^{c}}}}\left(n^{\log ^{b} n}, n^{\log ^{2} n}\right)$.

Proof of the Watson theorem for $k=2$

(1) Let $A_{1}, \ldots, A_{n}, \ldots$ is an enumeration of all algorithms such that each algorithm occurred infinitely many times.
(2) Consider sequences n_{i}, n_{i}^{*} such that $n_{1}=1, n_{i+1}=n_{i}^{*}+1$ and $n_{i}^{*}=2_{i}^{n_{i}^{\text {a }}}$
(3) Consider the following algorithm (on input 1^{n}):

- find i such that $n_{i} \leq n \leq n_{i}^{*}$;
- if $n=n_{i}^{*}$ return $b \in\{0,1\}$ such that $\operatorname{Pr}\left[A_{i}\left(1^{n_{i}}\right)=b\right] \leq \frac{1}{2}$;
- else run $A_{i}\left(1^{n+1}\right) \frac{8 \log \epsilon}{\epsilon^{2}}$ times and return majority of answers.

Proof of the samplable distributions hierarchy

LIST DECODING

There is polynomial-time algorithm $C^{\bullet}(n, i, \lambda, \delta)$ such that if $\operatorname{supp}(\gamma)=\left\{0, \ldots, 2^{n}-1\right\}$ and there is t such that $\operatorname{Pr}[\gamma=t] \geq \lambda$ then there is $i \leq\left(1+\frac{1}{\lambda}\right)^{2}$ such that $\operatorname{Pr}\left[C^{\gamma}(n, i, \delta, \lambda)=t\right] \geq 1-\delta$.

Proof of the samplable distributions hierarchy

LIST DECODING

There is polynomial-time algorithm $C^{(}(n, i, \lambda, \delta)$ such that if $\operatorname{supp}(\gamma)=\left\{0, \ldots, 2^{n}-1\right\}$ and there is t such that $\operatorname{Pr}[\gamma=t] \geq \lambda$ then there is $i \leq\left(1+\frac{1}{\lambda}\right)^{2}$ such that $\operatorname{Pr}\left[C^{\gamma}(n, i, \delta, \lambda)=t\right] \geq 1-\delta$.

Let us consider the following algorithm $C^{\gamma}(n, i, \lambda, \delta)$:
(1) Let $k=\left\lceil\frac{1}{\lambda}+1\right\rceil$ and $\epsilon=\frac{\lambda^{3}}{10 k}$;
(2) We interpret i as a pair (a, b), where $a, b \in[k]$;

Proof of the samplable distributions hierarchy

LIST DECODING

There is polynomial-time algorithm $C^{\bullet}(n, i, \lambda, \delta)$ such that if $\operatorname{supp}(\gamma)=\left\{0, \ldots, 2^{n}-1\right\}$ and there is t such that $\operatorname{Pr}[\gamma=t] \geq \lambda$ then there is $i \leq\left(1+\frac{1}{\lambda}\right)^{2}$ such that $\operatorname{Pr}\left[C^{\gamma}(n, i, \delta, \lambda)=t\right] \geq 1-\delta$.

Let us consider the following algorithm $C^{\gamma}(n, i, \lambda, \delta)$:
(1) Let $k=\left\lceil\frac{1}{\lambda}+1\right\rceil$ and $\epsilon=\frac{\lambda^{3}}{10 k}$;
(2) We interpret i as a pair (a, b), where $a, b \in[k]$;
(3) Request the oracle for $N=\left\lceil\frac{2\left(n+1+\log \frac{1}{\delta}\right)}{\epsilon^{2}}\right\rceil$ samples of γ;
least $\lambda-\epsilon a$;

Proof of the samplable distributions hierarchy

LIST DECODING

There is polynomial-time algorithm $C^{\bullet}(n, i, \lambda, \delta)$ such that if $\operatorname{supp}(\gamma)=\left\{0, \ldots, 2^{n}-1\right\}$ and there is t such that $\operatorname{Pr}[\gamma=t] \geq \lambda$ then there is $i \leq\left(1+\frac{1}{\lambda}\right)^{2}$ such that $\operatorname{Pr}\left[C^{\gamma}(n, i, \delta, \lambda)=t\right] \geq 1-\delta$.

Let us consider the following algorithm $C^{\gamma}(n, i, \lambda, \delta)$:
(1) Let $k=\left\lceil\frac{1}{\lambda}+1\right\rceil$ and $\epsilon=\frac{\lambda^{3}}{10 k}$;
(2) We interpret i as a pair (a, b), where $a, b \in[k]$;
(3) Request the oracle for $N=\left\lceil\frac{2\left(n+1+\log \frac{1}{\delta}\right)}{\epsilon^{2}}\right\rceil$ samples of γ;
(4) Consider the list y_{1}, \ldots, y_{s} of all elements with frequency at least $\lambda-\epsilon a$;

Proof of the samplable distributions hierarchy

LIST DECODING

There is polynomial-time algorithm $C^{\bullet}(n, i, \lambda, \delta)$ such that if $\operatorname{supp}(\gamma)=\left\{0, \ldots, 2^{n}-1\right\}$ and there is t such that $\operatorname{Pr}[\gamma=t] \geq \lambda$ then there is $i \leq\left(1+\frac{1}{\lambda}\right)^{2}$ such that $\operatorname{Pr}\left[C^{\gamma}(n, i, \delta, \lambda)=t\right] \geq 1-\delta$.

Let us consider the following algorithm $C^{\gamma}(n, i, \lambda, \delta)$:
(1) Let $k=\left\lceil\frac{1}{\lambda}+1\right\rceil$ and $\epsilon=\frac{\lambda^{3}}{10 k}$;
(2) We interpret i as a pair (a, b), where $a, b \in[k]$;
(3) Request the oracle for $N=\left\lceil\frac{2\left(n+1+\log \frac{1}{\delta}\right)}{\epsilon^{2}}\right\rceil$ samples of γ;
(4) Consider the list y_{1}, \ldots, y_{s} of all elements with frequency at least $\lambda-\epsilon a$;
(5) Return y_{b} if $b \leq s$ or 0 otherwise.

Magic tree

There exists a family of trees T_{i} such that
(1) The set of vertices of T_{i} is a subset of $\left\{n_{i}, n_{i}+1, \ldots, n_{i}^{*}\right\}$.
(2) n_{i}^{*} is the root of T_{i}.
(3) All leaves of T_{i} have numbers at most $m_{i}=2 n_{i}$.
(4) The depth of T_{i} is $d_{i}=2\left\lceil\log \log n_{i}\right\rceil$.
(5) If p is a parent of n then $p \leq n^{\log n}$.
(6) There is an algorithm that for any vertex n of T_{i} outputs the parent p of n and the number of children of p that are less than n in poly (n) steps.
(7) For every inner vertex v of $T_{i,}$ v has $k=\left\lceil\frac{1}{\lambda\left(n_{i}^{*}\right)}+1\right\rceil^{2}$ children.

