Complexity of distributions and average-case hardness

Authors:

Dmitry Itsykson, Alexander Knop, Dmitry Sokolov

Institute:

St. Petersburg Department of V.A. Steklov Institute of Mathematics of the Russian Academy of Sciences

Definitions

SAMPLABLE DISTRIBUTIONS

Ensemble of distributions $D \in \mathbf{Samp}(n^k)$ iff there is a randomized $O(n^k)$ -time algorithm A such that D_n and $A(1^n)$ are equally distributed. We also denote $\mathbf{PSamp} = \bigcup_k \mathbf{Samp}(n^k)$.

HEURISTIC COMPUTATIONS

Distributional problem $(L, D) \in \text{Heur}_{\delta} \mathbf{DTime}(n^k)$ iff there is $O(n^k)$ -time algorithm A such that

$$\forall n \in \mathbb{N} \Pr_{x \leftarrow D_n} [A(x) = L(x)] > 1 - \delta.$$

Additionally denote $\operatorname{Heur}_{\delta} \mathbf{P} = \bigcup_{k} \operatorname{Heur}_{\delta} \mathbf{DTime}(n^{k}).$

Definitions

SAMPLABLE DISTRIBUTIONS

Ensemble of distributions $D \in \mathbf{Samp}(n^k)$ iff there is a randomized $O(n^k)$ -time algorithm A such that D_n and $A(1^n)$ are equally distributed. We also denote $\mathbf{PSamp} = \bigcup_k \mathbf{Samp}(n^k)$.

HEURISTIC COMPUTATIONS

Distributional problem $(L, D) \in \text{Heur}_{\delta} \mathbf{DTime}(n^k)$ iff there is $O(n^k)$ -time algorithm A such that

$$\forall n \in \mathbb{N} \Pr_{x \leftarrow D_n} [A(x) = L(x)] > 1 - \delta.$$

Additionally denote $\operatorname{Heur}_{\delta} \mathbf{P} = \bigcup_{k} \operatorname{Heur}_{\delta} \mathbf{DTime}(n^{k}).$

Hamiltonian Path

GUREVICH AND SHELAH, 1987

Let HP denote the language of Hamiltonian graphs. Then $(HP, U) \in Heur_{\frac{1}{2^{O(\sqrt{n})}}} \mathbf{DTime}(n).$

OPEN PROBLEM

Find polynomial-time algorithm for HP.

Hamiltonian Path

GUREVICH AND SHELAH, 1987

Let HP denote the language of Hamiltonian graphs. Then $(HP, U) \in Heur_{\frac{1}{2^{O(\sqrt{n})}}} \mathbf{DTime}(n).$

OPEN PROBLEM

Find polynomial-time algorithm for HP.

Graph Isomorphism

BABAI, ERDOS AND SELKOW, 1980

Let GI denote the language of pairs of isomorphic graphs. Then $(GI, U) \in \text{Heur}_{\frac{1}{\sqrt{n}}} \mathbf{DTime}(n).$

OPEN PROBLEM

Find polynomial-time algorithm for Gl.

Graph Isomorphism

BABAI, ERDOS AND SELKOW, 1980

Let GI denote the language of pairs of isomorphic graphs. Then $(GI, U) \in \text{Heur}_{\frac{1}{\sqrt{n}}} DTime(n).$

OPEN PROBLEM

Find polynomial-time algorithm for GI.

GOAL

For every k there are a language L, ensemble D and small δ such that

- $D \in \mathbf{PSamp};$
- 2 $(L, D) \notin \text{Heur}_{1-\delta}\mathbf{P};$
- 3 for every $R \in \text{Samp}(n^k)$ we have that $(L, R) \in \text{Heur}_{\delta}\text{DTime}(n)$.

RESULT

There are a language L and ensemble D such that

1 $D \in \mathbf{Samp}(n^{\log n});$

2
$$(L,D) \notin \operatorname{Heur}_{1-\frac{1}{2^{\log \log \log n}}} \mathbf{P};$$

GOAL

For every k there are a language L, ensemble D and small δ such that

 $D \in \mathbf{PSamp};$

- 2 $(L, D) \notin \operatorname{Heur}_{1-\delta} \mathbf{P};$
- 3 for every $R \in \text{Samp}(n^k)$ we have that $(L, R) \in \text{Heur}_{\delta} \text{DTime}(n)$.

RESULT

There are a language *L* and ensemble *D* such that

1) $D \in \mathbf{Samp}(n^{\log n});$

2)
$$(L,D) \not\in \operatorname{Heur}_{1-\frac{1}{2^{\log \log \log n}}} \mathbf{P}_{1}$$

GOAL

For every k there are a language L, ensemble D and small δ such that

 $D \in \mathbf{PSamp};$

) $(L, D) \notin \text{Heur}_{1-\delta}\mathbf{P};$

3 for every $R \in \text{Samp}(n^k)$ we have that $(L, R) \in \text{Heur}_{\delta}\text{DTime}(n)$.

RESULT

There are a language *L* and ensemble *D* such that

1 $D \in \mathbf{Samp}(n^{\log n});$

2)
$$(L,D) \not\in \operatorname{Heur}_{1-\frac{1}{2^{\log\log\log n}}} \mathbf{P};$$

GOAL

For every k there are a language L, ensemble D and small δ such that

- $D \in \mathbf{PSamp};$
- 2 $(L, D) \not\in \operatorname{Heur}_{1-\delta} \mathbf{P};$
- 3 for every $R \in \text{Samp}(n^k)$ we have that $(L, R) \in \text{Heur}_{\delta}\text{DTime}(n)$.

RESULT

There are a language *L* and ensemble *D* such that

1 $D \in \mathbf{Samp}(n^{\log n});$

2)
$$(L,D) \not\in \operatorname{Heur}_{1-\frac{1}{2^{\log\log\log n}}} \mathbf{P};$$

GOAL

For every k there are a language L, ensemble D and small δ such that

- $D \in \mathbf{PSamp};$
- 2 $(L, D) \not\in \operatorname{Heur}_{1-\delta} \mathbf{P};$
- 3 for every $R \in \mathbf{Samp}(n^k)$ we have that $(L, R) \in \mathrm{Heur}_{\delta}\mathbf{DTime}(n)$.

RESULT

There are a language *L* and ensemble *D* such that

1 $D \in \mathbf{Samp}(n^{\log n});$

(*L*, *D*)
$$\notin$$
 Heur_{1- $\frac{1}{2^{\log \log \log n}}$} **P**;

GOAL

For every k there are a language L, ensemble D and small δ such that

- $D \in \mathbf{PSamp};$
- 2 $(L, D) \not\in \operatorname{Heur}_{1-\delta} \mathbf{P};$
- 3 for every $R \in \mathbf{Samp}(n^k)$ we have that $(L, R) \in \mathrm{Heur}_{\delta}\mathbf{DTime}(n)$.

RESULT

There are a language \boldsymbol{L} and ensemble \boldsymbol{D} such that

1) $D \in \mathbf{Samp}(n^{\log n});$

) $(L,D) \notin \operatorname{Heur}_{1-\frac{1}{2^{\log \log \log n}}} \mathbf{P}$

GOAL

For every k there are a language L, ensemble D and small δ such that

- $D \in \mathbf{PSamp};$
- 2 $(L, D) \not\in \operatorname{Heur}_{1-\delta} \mathbf{P};$
- 3 for every $R \in \mathbf{Samp}(n^k)$ we have that $(L, R) \in \mathrm{Heur}_{\delta}\mathbf{DTime}(n)$.

RESULT

There are a language \boldsymbol{L} and ensemble \boldsymbol{D} such that

 $D \in \mathbf{Samp}(n^{\log n});$

 $(L, D) \not\in \mathsf{Heur}_{1-\frac{1}{2}}$

GOAL

For every k there are a language L, ensemble D and small δ such that

- $D \in \mathbf{PSamp};$
- 2 $(L, D) \not\in \operatorname{Heur}_{1-\delta}\mathbf{P};$
- 3 for every $R \in \mathbf{Samp}(n^k)$ we have that $(L, R) \in \mathrm{Heur}_{\delta}\mathbf{DTime}(n)$.

RESULT

There are a language \boldsymbol{L} and ensemble \boldsymbol{D} such that

 $D \in \mathbf{Samp}(n^{\log n});$

2 $(L,D) \notin \operatorname{Heur}_{1-\frac{1}{2^{\log \log \log n}}} \mathbf{P};$

GOAL

For every k there are a language L, ensemble D and small δ such that

- $D \in \mathbf{PSamp};$
- 2 $(L, D) \not\in \operatorname{Heur}_{1-\delta}\mathbf{P};$
- 3 for every $R \in \mathbf{Samp}(n^k)$ we have that $(L, R) \in \mathrm{Heur}_{\delta}\mathbf{DTime}(n)$.

RESULT

There are a language \boldsymbol{L} and ensemble \boldsymbol{D} such that

1)
$$D \in \mathbf{Samp}(n^{\log n});$$

(2)
$$(L, D) \not\in \operatorname{Heur}_{1-\frac{1}{2^{\log \log \log n}}} \mathbf{P};$$

DISTRIBUTIONAL PROBLEMS

Functions f and g satisfy CD property with parameters $\alpha(n) > 0$ and $\beta(n) > 0$ $(CD_{\alpha(n),\beta(n)}(f(n),g(n)))$ if there are $D \in Samp(f(n))$ and L such that 1 $(L,F) \in Heur_{\alpha(n)}P$ for every $F \in Samp(g(n))$. 2 $(L,D) \notin Heur_{1-\beta(n)}P$.

SAMPLING DISTRIBUTIONS

Functions f and g satisfy SD property with parameter $\lambda(n)$ (SD_{$\lambda(n)$}(f(n), g(n))) if there is $D \in$ **Samp**(f(n)) such that for every $F \in$ **Samp**(g(n)), for infinitely many n the statistical distance between D_n and F_n is at least $1-\lambda(n)$.

DISTRIBUTIONAL PROBLEMS

Functions f and g satisfy CD property with parameters $\alpha(n) > 0$ and $\beta(n) > 0$ $(CD_{\alpha(n),\beta(n)}(f(n),g(n)))$ if there are $D \in Samp(f(n))$ and L such that 1 $(L,F) \in Heur_{\alpha(n)}P$ for every $F \in Samp(g(n))$. 2 $(L,D) \notin Heur_{1-\beta(n)}P$.

SAMPLING DISTRIBUTIONS

Functions f and g satisfy SD property with parameter $\lambda(n)$ (SD_{$\lambda(n)$}(f(n), g(n))) if there is $D \in$ **Samp**(f(n)) such that for every $F \in$ **Samp**(g(n)), for infinitely many n the statistical distance between D_n and F_n is at least $1-\lambda(n)$.

$1 \to 2$

If $CD_{\alpha(n),\beta(n)}(f(n),g(n))$ then $SD_{\alpha(n)+\beta(n)}(f(n),g(n))$.

$2 \rightarrow 1$

If $SD_{\lambda(n)}(f(n), g(n) \log g(n))$ then $CD_{\omega(\lambda(n)), \lambda(n)}(f(n), g(n))$.

$1 \rightarrow 2$

If $CD_{\alpha(n),\beta(n)}(f(n),g(n))$ then $SD_{\alpha(n)+\beta(n)}(f(n),g(n))$.

$2 \rightarrow 1$

If $SD_{\lambda(n)}(f(n), g(n) \log g(n))$ then $CD_{\omega(\lambda(n)),\lambda(n)}(f(n), g(n))$.

WATSON, 2013

For any a > 0, k > 0 and $\epsilon > 0$ there is $D \in \mathbf{PSamp}$ such that for every $F \in \mathbf{Samp}(n^a)$, for infinitely many n the statistical distance between D_n and F_n is at least $1 - \frac{1}{k} - \epsilon$. In previous notation: $\mathrm{SD}_{1,+\epsilon}(\mathrm{poly}(n), n^k)$.

ITSYKSON, KNOP, SOKOLOV, 2015

For every *a*, *b*, *c* such that 0 < a < b and c > 0 there is $D \in \mathbf{Samp}(n^{\log^{b} n})$ such that for every $F \in \mathbf{Samp}(n^{\log^{b} n})$, for infinitely many *n* the statistical distance between D_n and F_n is at least $1 - \frac{1}{2^{(\log \log \log n)^c}}$. In previous notation: $\mathrm{SD}_{\frac{1}{2^{(\log \log \log n)^c}}}(n^{\log^{b} n}, n^{\log^{b} n})$.

WATSON, 2013

For any a > 0, k > 0 and $\epsilon > 0$ there is $D \in \mathbf{PSamp}$ such that for every $F \in \mathbf{Samp}(n^a)$, for infinitely many n the statistical distance between D_n and F_n is at least $1 - \frac{1}{k} - \epsilon$. In previous notation: $\mathrm{SD}_{\frac{1}{k} + \epsilon}(\mathrm{poly}(n), n^k)$.

ITSYKSON, KNOP, SOKOLOV, 2015

For every *a*, *b*, *c* such that 0 < a < b and c > 0 there is $D \in \mathbf{Samp}(n^{\log^b n})$ such that for every $F \in \mathbf{Samp}(n^{\log^b n})$, for infinitely many *n* the statistical distance between D_n and F_n is at least $1 - \frac{1}{2^{(\log \log \log n)^c}}$. In previous notation: $\mathrm{SD}_{\frac{1}{2^{(\log \log \log n)^c}}}(n^{\log^b n}, n^{\log^b n})$.

WATSON, 2013

For any a > 0, k > 0 and $\epsilon > 0$ there is $D \in \mathbf{PSamp}$ such that for every $F \in \mathbf{Samp}(n^a)$, for infinitely many n the statistical distance between D_n and F_n is at least $1 - \frac{1}{k} - \epsilon$. In previous notation: $\mathrm{SD}_{\frac{1}{k} + \epsilon}(\mathrm{poly}(n), n^k)$.

ITSYKSON, KNOP, SOKOLOV, 2015

For every *a*, *b*, *c* such that 0 < a < b and c > 0 there is $D \in \mathbf{Samp}(n^{\log^b n})$ such that for every $F \in \mathbf{Samp}(n^{\log^b n})$, for infinitely many *n* the statistical distance between D_n and F_n is at least $1 - \frac{1}{2^{(\log \log n)^c}}$. In previous notation: SD_____($n^{\log^b n}, n^{\log^b n})$.

WATSON, 2013

For any a > 0, k > 0 and $\epsilon > 0$ there is $D \in \mathbf{PSamp}$ such that for every $F \in \mathbf{Samp}(n^a)$, for infinitely many n the statistical distance between D_n and F_n is at least $1 - \frac{1}{k} - \epsilon$. In previous notation: $\mathrm{SD}_{\frac{1}{k} + \epsilon}(\mathrm{poly}(n), n^k)$.

ITSYKSON, KNOP, SOKOLOV, 2015

For every *a*, *b*, *c* such that 0 < a < b and c > 0 there is $D \in \mathbf{Samp}(n^{\log^b n})$ such that for every $F \in \mathbf{Samp}(n^{\log^a n})$, for infinitely many *n* the statistical distance between D_n and F_n is at least $1 - \frac{1}{2^{(\log \log \log n)^c}}$. In previous notation: $\mathbf{SD}_{\frac{1}{2^{(\log \log \log n)^c}}}(n^{\log^b n}, n^{\log^a n})$.

Proof of the Watson theorem for k = 2

- Let A₁, ..., A_n, ...is an enumeration of all algorithms such that each algorithm occurred infinitely many times.
- 2 Consider sequences n_i , n_i^* such that $n_1 = 1$, $n_{i+1} = n_i^* + 1$ and $n_i^* = 2^{n_i^{s+1}}$
- 3 Consider the following algorithm (on input 1^n):
 - find *i* such that $n_i \leq n \leq n_i^*$;
 - if $n = n_i^*$ return $b \in \{0, 1\}$ such that $\Pr[A_i(1^{n_i}) = b] \leq \frac{1}{2}$;
 - ▶ else run $A_i(1^{n+1}) \xrightarrow{8 \log \epsilon}{\epsilon^2}$ times and return majority of answers.

LIST DECODING

There is polynomial-time algorithm $C^{\bullet}(n, i, \lambda, \delta)$ such that if $\operatorname{supp}(\gamma) = \{0, \ldots, 2^n - 1\}$ and there is t such that $\Pr[\gamma = t] \ge \lambda$ then there is $i \le (1 + \frac{1}{\lambda})^2$ such that $\Pr[C^{\gamma}(n, i, \delta, \lambda) = t] \ge 1 - \delta$.

Let us consider the following algorithm $C^{\gamma}(n, i, \lambda, \delta)$:

1 Let
$$k = \lceil \frac{1}{\lambda} + 1 \rceil$$
 and $\epsilon = \frac{\lambda^3}{10k}$

2 We interpret *i* as a pair (a, b), where $a, b \in [k]$;

- 3 Request the oracle for $N = \lceil \frac{2(n+1+\log \frac{1}{\delta})}{\epsilon^2} \rceil$ samples of γ ;
- Consider the list y₁, ..., y_s of all elements with frequency at least λ εa;
- **5** Return y_b if $b \le s$ or 0 otherwise

LIST DECODING

There is polynomial-time algorithm $C^{\bullet}(n, i, \lambda, \delta)$ such that if $\operatorname{supp}(\gamma) = \{0, \ldots, 2^n - 1\}$ and there is t such that $\Pr[\gamma = t] \ge \lambda$ then there is $i \le (1 + \frac{1}{\lambda})^2$ such that $\Pr[C^{\gamma}(n, i, \delta, \lambda) = t] \ge 1 - \delta$.

- 1 Let $k = \lfloor \frac{1}{\lambda} + 1 \rfloor$ and $\epsilon = \frac{\lambda^3}{10k}$;
- 2 We interpret *i* as a pair (a, b), where $a, b \in [k]$;
- 3 Request the oracle for $N = \lceil \frac{2(n+1+\log \frac{1}{\delta})}{\epsilon^2} \rceil$ samples of γ ;
- Consider the list y₁, ..., y_s of all elements with frequency at least λ εa;
- **5** Return y_b if $b \le s$ or 0 otherwise.

LIST DECODING

(2)

There is polynomial-time algorithm $C^{\bullet}(n, i, \lambda, \delta)$ such that if $\operatorname{supp}(\gamma) = \{0, \ldots, 2^n - 1\}$ and there is t such that $\Pr[\gamma = t] \ge \lambda$ then there is $i \le (1 + \frac{1}{\lambda})^2$ such that $\Pr[C^{\gamma}(n, i, \delta, \lambda) = t] \ge 1 - \delta$.

- (1) Let $k = \left\lceil \frac{1}{\lambda} + 1 \right\rceil$ and $\epsilon = \frac{\lambda^3}{10k}$;
 - We interpret *i* as a pair (a, b), where $a, b \in [k]$;
- 3 Request the oracle for $N = \lceil \frac{2(n+1+\log \frac{1}{\delta})}{\epsilon^2} \rceil$ samples of γ ;
 - 4 Consider the list y_1 , ..., y_s of all elements with frequency at least $\lambda \epsilon a$;
- **5** Return y_b if $b \le s$ or 0 otherwise.

LIST DECODING

There is polynomial-time algorithm $C^{\bullet}(n, i, \lambda, \delta)$ such that if $\operatorname{supp}(\gamma) = \{0, \ldots, 2^n - 1\}$ and there is t such that $\Pr[\gamma = t] \ge \lambda$ then there is $i \le (1 + \frac{1}{\lambda})^2$ such that $\Pr[C^{\gamma}(n, i, \delta, \lambda) = t] \ge 1 - \delta$.

- (1) Let $k = \left\lceil \frac{1}{\lambda} + 1 \right\rceil$ and $\epsilon = \frac{\lambda^3}{10k}$;
- 2 We interpret *i* as a pair (a, b), where $a, b \in [k]$;
- (3) Request the oracle for $N = \lceil \frac{2(n+1+\log \frac{1}{\delta})}{\epsilon^2} \rceil$ samples of γ ;
- Consider the list y₁, ..., y_s of all elements with frequency at least λ εa;
- **5** Return y_b if $b \le s$ or 0 otherwise

LIST DECODING

There is polynomial-time algorithm $C^{\bullet}(n, i, \lambda, \delta)$ such that if $\operatorname{supp}(\gamma) = \{0, \ldots, 2^n - 1\}$ and there is t such that $\Pr[\gamma = t] \ge \lambda$ then there is $i \le (1 + \frac{1}{\lambda})^2$ such that $\Pr[C^{\gamma}(n, i, \delta, \lambda) = t] \ge 1 - \delta$.

- (1) Let $k = \left\lceil \frac{1}{\lambda} + 1 \right\rceil$ and $\epsilon = \frac{\lambda^3}{10k}$;
- 2 We interpret *i* as a pair (a, b), where $a, b \in [k]$;
- (3) Request the oracle for $N = \lceil \frac{2(n+1+\log \frac{1}{\delta})}{\epsilon^2} \rceil$ samples of γ ;
- Consider the list y₁, ..., y_s of all elements with frequency at least λ - εa;
- 5 Return y_b if $b \le s$ or 0 otherwise.

Magic tree

There exists a family of trees T_i such that

- 1 The set of vertices of T_i is a subset of $\{n_i, n_i + 1, \dots, n_i^*\}$.
- 2 n_i^* is the root of T_i .

3 All leaves of T_i have numbers at most $m_i = 2n_i$.

- 4 The depth of T_i is $d_i = 2 \lceil \log \log n_i \rceil$.
- 5 If p is a parent of n then $p \le n^{\log n}$.

6 There is an algorithm that for any vertex *n* of *T_i* outputs the parent *p* of *n* and the number of children of *p* that are less than *n* in *poly*(*n*) steps.

7 For every inner vertex v of T_i , v has $k = \left\lceil \frac{1}{\lambda(n_i^*)} + 1 \right\rceil^2$ children.