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Branching Programs
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A branching program is read-b if
it reads each variable at most b
times.

We say that a branching pro-
gram is b-OBDD if it is a read-
b branching program reading all
the variables in the same order b
times.




Branching Programs
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Search Problems

DEFINITION

Let ¢ = A G be an unsatisfiable CNF. Search, C {0,1}" x [n] is a relation
i=1
such that

(x,i) € Searchy <= Ci(x) =0.
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Search Problems

THEOREM (CHVATAL AND SZEMEREDI, 1991)

Let ¢ = A Ci be an unsatisfiable CNF.

i=1
The minimal size of a regular (ordered) resolution refutation of ¢ is equal to
the minimal size of a read-once branching program (OBDD) for Searchy.
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Search Problems

THEOREM (CHVATAL AND SZEMEREDI, 1991)

Let ¢ = A C; be an unsatisfiable CNF.
=1
The minimal size of a regular (ordered) resolution refutation of ¢ is equal to

the minimal size of a read-once branching program (OBDD) for Searchy.

This theorem does not hold for resolution and unrestricted
branching programs.
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C-IPS

DEFINITION

Let fi,...,fm € F[x1,...,xs]. We say that an arithmetic circuit C€ C is a
C-IPS proof of the unsatisfiability of fi(x1,...,%n) =+ = fm(x1,...,x,) = 0 if

> C(x1,...,%n,0,...,0) =0 and

> C(xty ey Xy (X1, oy Xn)y ooy Fn(X1, oy Xa)) = 1.
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C-IPS

DEFINITION
Let fi,...,fm € F[x1,...,xas]. We say that an arithmetic circuit C€ C is a
C-IPS proof of the unsatisfiability of fi(x1,...,%n) =+ = fm(x1,..., %) =0 if

> C(x1,...,%n,0,...,0) =0 and

P C(x1y ey Xy FL(X1y ooy Xn)y e oy Tm(X1, - ooy X)) = 1.

Forbes et al. considered roABP-IPS, the proof system where Cis a
read-once oblivious algebraic branching program.
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DEFINITION

Let ¢ = /"( Fi. We say that a branching program C € C (C depends on
X1yeon ,x;:,i/l, ..., ¥m) is a C-PS; refutation of ¢ if

> C(x1,y...y%n,1,...,1) =1,

> C(x1,. .oy Xny Fi(x1, .y Xn)y ooy Fm(x1,...,%2)) =0, and

> on any path in C all the variables y1, ..., ym occur altogether at most
once.

INTRODUCTION | Alexander Knop 5]



Search Problems

THEOREM

Let ¢ = /\ Ci be an unsatisfiable CNF.

The mmlmal size of a (1, +k)-BP-PS; (k-OBDD-PS: ) refutation of ¢ is
polynomially related to the minimal size of a (1, +k)-BP (k-OBDD) for
Searchy.

INTRODUCTION | Alexander Knop 6



Search Problems

THEOREM

Let ¢ = /\ Ci be an unsatisfiable CNF.

The mmlmal size of a (1, +k)-BP-PS; (k-OBDD-PS: ) refutation of ¢ is
polynomially related to the minimal size of a (1, +k)-BP (k-OBDD) for
Searchy.

Note that regular resolution (ordered resolution) is equivalent to
1-BP-PS,; (OBDD-PS;).
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Communication Complexity |

DEFINITION

Communication complexity of f: {0,1}" — {0, 1} with respect to a partition II
of [n] (D (f,1I)) is the minimal number of bits Alice and Bob need to send to
each other to compute f(x) if Alice knows only bits of x with indices from IIg
and Bob knows only bits of x with indices from II;.
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Communication Complexity |

DEFINITION

Communication complexity of f: {0,1}" — {0, 1} with respect to a partition II
of [n] (D (f,1I)) is the minimal number of bits Alice and Bob need to send to
each other to compute f(x) if Alice knows only bits of x with indices from IIg
and Bob knows only bits of x with indices from II;.

DEFINITION

Best communication complexity of f: {0,1}" — {0,1} (D** (f)) is the
minimum of D (f,II) over II such that |IIg — IT;| < 1.
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Lower Bounds |

THEOREM

If D is an b-OBDD for Search,, then D*** (Searchy) < (2b— 1) [log |D|].

OBDDS | Alexander Knop 8



Lower Bounds |

THEOREM

If D is an b-OBDD for Search,, then D*** (Searchy) < (2b— 1) [log |D|].

THEOREM (GOOS AND PITASSI, 2014)

There are families of formulas ¢, in k-CNF and partitions 11, such that
D (Searchg,,I1,) > -2

= logn-
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Lower Bounds |

THEOREM

If D is an b-OBDD for Search,, then D*** (Searchy) < (2b— 1) [log |D|].

THEOREM (GOOS AND PITASSI, 2014)

There are families of formulas ¢, in k-CNF and partitions 11, such that
D (Searchy,,I1,) > =

= logn-

THEOREM

There is a transformation T such that for any large enough ¢ in k-CNF and
partition I1, |T(¢)| = poly(|¢|) and D (Searchy, IT) < D*** (Searchy)).
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Tseitin Formulas

DEFINITION

Let G be a connected graph on vertices V (|V] is odd) with edges E. Every
edge e € E has the corresponding propositional variable p.. For every vertex
v € V we write down a formula in CNF that encodes

Z Pv,u) = 1 (mOd 2)

(u,v)€E

The conjunction of these formulas is a Tseitin formula TS¢ for the graph G.
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Tseitin Formulas

DEFINITION

Let G be a connected graph on vertices V (|V] is odd) with edges E. Every
edge e € E has the corresponding propositional variable p.. For every vertex
v € V we write down a formula in CNF that encodes

Z Pv,u) = 1 (mOd 2)

(u,v)€E

The conjunction of these formulas is a Tseitin formula TS¢ for the graph G.

Note that if G has small degree, then D (Searchrg,) = O(log |V]).
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Communication Complexity Il

DEFINITION

Communication complexity of f: {0,1}" — {0, 1} with respect to a partition II
of [n] with k rounds (D™ (£,1I)) is the minimal number of bits Alice and Bob

need to send to each other to compute f(x).
Their communication consists of k rounds, on each round one of them

sends a string.
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Communication Complexity Il

DEFINITION

Communication complexity of f: {0,1}" — {0, 1} with respect to a partition II
of [n] with k rounds (D™ (£,1I)) is the minimal number of bits Alice and Bob
need to send to each other to compute f(x).

Their communication consists of k rounds, on each round one of them
sends a string.

DEFINITION

Best communication complexity of f: {0,1}" — {0,1} (Dbt (£)) with k
rounds is the minimum of D (£, TI) over II such that [T — IT;| < 1.

OBDDS | Alexander Knop



Lower Bounds 1l

DEFINITION

Let f: {0,1}" — {0,1}. KW (f) C (F (1) x £71(0)) x [n] is a relation such that

(v, i) € KW (f) < xi # yi.
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Lower Bounds 1l

DEFINITION

Let f: {0,1}" — {0,1}. KW (f) C (F (1) x £7(0)) x [n] is a relation such that

(% y, i) € KW (f) < xi # yi.

THEOREM (HASTAD, 1987)

For any b > 0, DY) (KW (@,)) > n'/?.
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Lower Bounds 1l

THEOREM (HASTAD, 1987)

For any b > 0, D®® (KW (@,)) > n'/®.

THEOREM

There are families of graphs G, of constant degree and labeling functions c,
such that D(®)*** (Searchrs,) > D*) (KW (@.,)) for some € > 0 and any
b> 0.
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Lower Bounds 1l

THEOREM (HASTAD, 1987)

For any b > 0, D®®) (KW (@,)) > n'/®.

THEOREM

There are families of graphs G, of constant degree and labeling functions c,
such that D" (Searchrs,) > D) (KW (&.n)) for some € > 0 and any
b>0.

THEOREM

If D is a b-OBDD for Searchy, then D?*~1):best (Search,) < (2b— 1) [log |D)]
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Separation |

THEOREM (GARG ET AL, 2018)

Any CP refutation of ¢ o Indn, has size at least n"(*), where w(¢) is the
minimal width of a resolution refutation of ¢.
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Separation |

THEOREM (GARG ET AL, 2018)

Any CP refutation of ¢ o Ind,, has size at least n"®), where w(¢) is the
minimal width of a resolution refutation of ¢.

THEOREM (BONET AND GALESI, 2001)

There is a formula ¢ such that w(¢) = Q(n) and there is an ordered resolution
refutation of ¢ of size poly(n).
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Separation |

THEOREM (GARG ET AL, 2018)

Any CP refutation of ¢ o Ind,, has size at least n"®), where w(¢) is the
minimal width of a resolution refutation of ¢.

THEOREM (BONET AND GALESI, 2001)

There is a formula ¢ such that w(¢) = Q(n) and there is an ordered resolution
refutation of ¢ of size poly(n).

THEOREM

If a formula ¢ has an OBDD-PS; refutation of size S, then for any gadget
g:{0,1}* = {0,1}, ¢ o g has a 2-OBDD-PS, refutation of size poly(S, |¢ o g]).
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Separation |l

THEOREM (ALEKHNOVICH AND RAZBOROV, 2002)

Any resolution refutation of ¢© has size at least 2*(?), where w(¢) is the
minimal width of a resolution refutation of ¢.
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Separation |l

THEOREM (ALEKHNOVICH AND RAZBOROV, 2002)

Any resolution refutation of ¢ has size at least 2*(?), where w(p) is the
minimal width of a resolution refutation of ¢.

THEOREM (BONET AND GALESI, 2001)

There is a formula ¢ in 3-CNF such that w(¢) = Q(n) but there is an ordered
resolution refutation of ¢ of size poly(n).
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Separation |l

THEOREM (ALEKHNOVICH AND RAZBOROV, 2002)

Any resolution refutation of ¢ has size at least 2*(?), where w(p) is the
minimal width of a resolution refutation of ¢.

THEOREM (BONET AND GALESI, 2001)

There is a formula ¢ in 3-CNF such that w(¢) = Q(n) but there is an ordered
resolution refutation of ¢ of size poly(n).

THEOREM

If a formula ¢ has an OBDD-PS; refutation of size S, then for any gadget
g:{0,1}* = {0,1}, ¢ o g has a (1,+2%)-BP-PS; refutation of size
poly(S, |¢ o gl).
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Open Questions

@ Is it possible to prove a lower bound on size of
(1, +b)-BP-PS; refutations of a formula ¢ for b > 0?
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Open Questions

@ Is it possible to prove a lower bound on size of
(1, +b)-BP-PS; refutations of a formula ¢ for b > 0?

(2) Is it possible to show that CP does not simulate
(1,+b)-BP-PS;?

OPEN QUESTIONS | Alexander Knop



Open Questions

@ Is it possible to prove a lower bound on size of
(1, +b)-BP-PS; refutations of a formula ¢ for b > 0?

(2) Is it possible to show that CP does not simulate
(1,+b)-BP-PS;?

(3) Are random 3-CNFs exponentially hard for (1, +b)-BP-PS;
and k~-OBDD-PS;?

OPEN QUESTIONS | Alexander Knop



