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Branching Programs are dag’s
such that:

▶ each node is labeled by a
variable and has out-degree
2 (one edge is labeled by a
0 and one is labeled by 1);

▶ each leaf is labeled by an
output value.
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A branching program is read-b if
it reads each variable at most b
times.
We say that a branching pro-
gram is b-OBDD if it is a read-
b branching program reading all
the variables in the same order b
times.
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A branching program is
(1,+b)-BP if in every path
it reads all the variables except b
of them only once.
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Search Problems

DEFINITION

Let ϕ =
m∧

i=1

Ci be an unsatisfiable CNF. Searchϕ ⊆ {0, 1}n × [n] is a relation
such that

(x, i) ∈ Searchϕ ⇐⇒ Ci(x) = 0.
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Search Problems

THEOREM (CHVÁTAL AND SZEMERÉDI, 1991)

Let ϕ =
m∧

i=1

Ci be an unsatisfiable CNF.
The minimal size of a regular (ordered) resolution refutation of ϕ is equal to
the minimal size of a read-once branching program (OBDD) for Searchϕ.
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Search Problems

THEOREM (CHVÁTAL AND SZEMERÉDI, 1991)

Let ϕ =
m∧

i=1

Ci be an unsatisfiable CNF.
The minimal size of a regular (ordered) resolution refutation of ϕ is equal to
the minimal size of a read-once branching program (OBDD) for Searchϕ.

This theorem does not hold for resolution and unrestricted
branching programs.
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C-IPS

DEFINITION

Let f1, . . . , fm ∈ F[x1, . . . , xn]. We say that an arithmetic circuit C ∈ C is a
C-IPS proof of the unsatisfiability of f1(x1, . . . , xn) = · · · = fm(x1, . . . , xn) = 0 if

▶ C(x1, . . . , xn, 0, . . . , 0) = 0 and
▶ C(x1, . . . , xn, f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)) = 1.

Forbes et al. considered roABP-IPS, the proof system where C is a
read-once oblivious algebraic branching program.
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C-PS1

DEFINITION

Let ϕ =
m∧

i=1

Fi. We say that a branching program C ∈ C (C depends on
x1, . . . , xn, y1, . . . , ym) is a C-PS1 refutation of ϕ if

▶ C(x1, . . . , xn, 1, . . . , 1) = 1,
▶ C(x1, . . . , xn,F1(x1, . . . , xn), . . . ,Fm(x1, . . . , xn)) = 0, and
▶ on any path in C all the variables y1, . . . , ym occur altogether at most

once.
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Search Problems

THEOREM

Let ϕ =
m∧

i=1

Ci be an unsatisfiable CNF.
The minimal size of a (1,+k)-BP-PS1 (k-OBDD-PS1) refutation of ϕ is
polynomially related to the minimal size of a (1,+k)-BP (k-OBDD) for
Searchϕ.

Note that regular resolution (ordered resolution) is equivalent to
1-BP-PS1 (OBDD-PS1).
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Communication Complexity I

DEFINITION

Communication complexity of f : {0, 1}n → {0, 1} with respect to a partition Π
of [n] (D (f,Π)) is the minimal number of bits Alice and Bob need to send to
each other to compute f(x) if Alice knows only bits of x with indices from Π0

and Bob knows only bits of x with indices from Π1.

DEFINITION

Best communication complexity of f : {0, 1}n → {0, 1} (Dbest (f)) is the
minimum of D (f,Π) over Π such that |Π0 −Π1| ≤ 1.

OBDDS | Alexander Knop 7



Communication Complexity I

DEFINITION

Communication complexity of f : {0, 1}n → {0, 1} with respect to a partition Π
of [n] (D (f,Π)) is the minimal number of bits Alice and Bob need to send to
each other to compute f(x) if Alice knows only bits of x with indices from Π0

and Bob knows only bits of x with indices from Π1.

DEFINITION

Best communication complexity of f : {0, 1}n → {0, 1} (Dbest (f)) is the
minimum of D (f,Π) over Π such that |Π0 −Π1| ≤ 1.

OBDDS | Alexander Knop 7



Lower Bounds I

THEOREM

If D is an b-OBDD for Searchϕ, then Dbest (Searchϕ) ≤ (2b − 1) ⌈log |D|⌉.

THEOREM (GÖÖS AND PITASSI, 2014)

There are families of formulas ϕn in k-CNF and partitions Πn such that
D (Searchϕn ,Πn) ≥ n

log n .

THEOREM

There is a transformation T such that for any large enough ϕ in k-CNF and
partition Π, |T (ϕ)| = poly(|ϕ|) and D (Searchϕ,Π) ≤ Dbest (SearchT (ϕ)

)
.
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Tseitin Formulas

DEFINITION

Let G be a connected graph on vertices V (|V| is odd) with edges E. Every
edge e ∈ E has the corresponding propositional variable pe. For every vertex
v ∈ V we write down a formula in CNF that encodes∑

(u,v)∈E
p(v,u) ≡ 1 (mod 2).

The conjunction of these formulas is a Tseitin formula TSG for the graph G.

Note that if G has small degree, then D
(
SearchTSG

)
= O(log |V|).
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Communication Complexity II

DEFINITION

Communication complexity of f : {0, 1}n → {0, 1} with respect to a partition Π
of [n] with k rounds (D(k) (f,Π)) is the minimal number of bits Alice and Bob
need to send to each other to compute f(x).
Their communication consists of k rounds, on each round one of them
sends a string.

DEFINITION

Best communication complexity of f : {0, 1}n → {0, 1} (D(k),best (f)) with k
rounds is the minimum of D(k) (f,Π) over Π such that |Π0 −Π1| ≤ 1.
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Lower Bounds II

DEFINITION

Let f : {0, 1}n → {0, 1}. KW (f) ⊆ (f−1(1)× f−1(0))× [n] is a relation such that

(x, y, i) ∈ KW (f) ⇐⇒ xi ̸= yi.
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Lower Bounds II

DEFINITION

Let f : {0, 1}n → {0, 1}. KW (f) ⊆ (f−1(1)× f−1(0))× [n] is a relation such that

(x, y, i) ∈ KW (f) ⇐⇒ xi ̸= yi.

THEOREM (HÅSTAD, 1987)

For any b > 0, D(b) (KW (⊕n)) ≥ n1/b.
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Lower Bounds II

THEOREM (HÅSTAD, 1987)

For any b > 0, D(b) (KW (⊕n)) ≥ n1/b.

THEOREM

There are families of graphs Gn of constant degree and labeling functions cn
such that D(b),best (SearchTSG

)
≥ D(b) (KW (⊕ϵn)) for some ϵ > 0 and any

b > 0.
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Lower Bounds II

THEOREM (HÅSTAD, 1987)

For any b > 0, D(b) (KW (⊕n)) ≥ n1/b.

THEOREM

There are families of graphs Gn of constant degree and labeling functions cn
such that D(b),best (SearchTSG

)
≥ D(b) (KW (⊕ϵn)) for some ϵ > 0 and any

b > 0.

THEOREM

If D is a b-OBDD for Searchϕ, then D(2b−1),best (Searchϕ) ≤ (2b − 1) ⌈log |D|⌉
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Separation I

THEOREM (GARG ET AL, 2018)

Any CP refutation of ϕ ◦ Indm has size at least nw(ϕ), where w(ϕ) is the
minimal width of a resolution refutation of ϕ.

THEOREM (BONET AND GALESI, 2001)

There is a formula ϕ such that w(ϕ) = Ω(n) and there is an ordered resolution
refutation of ϕ of size poly(n).

THEOREM

If a formula ϕ has an OBDD-PS1 refutation of size S, then for any gadget
g : {0, 1}k → {0, 1}, ϕ ◦ g has a 2-OBDD-PS1 refutation of size poly(S, |ϕ ◦ g|).
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Separation II

THEOREM (ALEKHNOVICH AND RAZBOROV, 2002)

Any resolution refutation of ϕ⊕ has size at least 2w(ϕ), where w(ϕ) is the
minimal width of a resolution refutation of ϕ.

THEOREM (BONET AND GALESI, 2001)

There is a formula ϕ in 3-CNF such that w(ϕ) = Ω(n) but there is an ordered
resolution refutation of ϕ of size poly(n).

THEOREM

If a formula ϕ has an OBDD-PS1 refutation of size S, then for any gadget
g : {0, 1}k → {0, 1}, ϕ ◦ g has a (1,+2k)-BP-PS1 refutation of size
poly(S, |ϕ ◦ g|).
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Open Questions

1 Is it possible to prove a lower bound on size of
(1,+b)-BP-PS1 refutations of a formula ϕ for b > 0?

2 Is it possible to show that CP does not simulate
(1,+b)-BP-PS1?

3 Are random 3-CNFs exponentially hard for (1,+b)-BP-PS1

and k-OBDD-PS1?
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