Branching Program Complexity of Canonical Search Problems and Proof Complexity of Formulas

Authors:
Alexander Knop

Institute:
UC San Diego

Branching Programs

Branching Programs are dag's such that:

- each node is labeled by a variable and has out-degree 2 (one edge is labeled by a 0 and one is labeled by 1);
- each leaf is labeled by an output value.

Branching Programs

A branching program is read- b if it reads each variable at most b times.
We say that a branching program is b-OBDD if it is a readb branching program reading all the variables in the same order b times.

Branching Programs

A branching program is $(1,+b)$-BP if in every path it reads all the variables except b of them only once.

Search Problems

DEFINITION

Let $\phi=\bigwedge_{i=1}^{m} C_{i}$ be an unsatisfiable CNF. Search ${ }_{\phi} \subseteq\{0,1\}^{n} \times[n]$ is a relation such that

$$
(x, i) \in \operatorname{Search}_{\phi} \Longleftrightarrow C_{i}(x)=0
$$

Search Problems

THEOREM (CHVÁTAL AND SZEMERÉDI, 1991)

Let $\phi=\bigwedge_{i=1}^{m} C_{i}$ be an unsatisfiable CNF.
The minimal size of a regular (ordered) resolution refutation of ϕ is equal to the minimal size of a read-once branching program (OBDD) for Search $_{\phi}$.

Search Problems

THEOREM (CHVÁTAL AND SZEMERÉDI, 1991)

Let $\phi=\bigwedge_{i=1}^{m} C_{i}$ be an unsatisfiable CNF.
The minimal size of a regular (ordered) resolution refutation of ϕ is equal to the minimal size of a read-once branching program (OBDD) for Search $_{\phi}$.

This theorem does not hold for resolution and unrestricted branching programs.

\mathcal{C}-IPS

DEFINITION

Let $f_{1}, \ldots, f_{m} \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$. We say that an arithmetic circuit $C \in \mathcal{C}$ is a \mathcal{C}-IPS proof of the unsatisfiability of $f_{1}\left(x_{1}, \ldots, x_{n}\right)=\cdots=f_{m}\left(x_{1}, \ldots, x_{n}\right)=0$ if

- $C\left(x_{1}, \ldots, x_{n}, 0, \ldots, 0\right)=0$ and
$\triangleright C\left(x_{1}, \ldots, x_{n}, f_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, f_{m}\left(x_{1}, \ldots, x_{n}\right)\right)=1$.

\mathcal{C}-IPS

DEFINITION

Let $f_{1}, \ldots, f_{m} \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$. We say that an arithmetic circuit $C \in \mathcal{C}$ is a \mathcal{C}-IPS proof of the unsatisfiability of $f_{1}\left(x_{1}, \ldots, x_{n}\right)=\cdots=f_{m}\left(x_{1}, \ldots, x_{n}\right)=0$ if

- $C\left(x_{1}, \ldots, x_{n}, 0, \ldots, 0\right)=0$ and
- $C\left(x_{1}, \ldots, x_{n}, f_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, f_{m}\left(x_{1}, \ldots, x_{n}\right)\right)=1$.

Forbes et al. considered roABP-IPS, the proof system where C is a read-once oblivious algebraic branching program.

$\mathcal{C}-\mathrm{PS}_{1}$

DEFINITION

Let $\phi=\bigwedge_{i=1}^{m} F_{i}$. We say that a branching program $C \in \mathcal{C}(C$ depends on $\left.x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)$ is a $\mathcal{C}-\mathbf{P S} \mathbf{S}_{1}$ refutation of ϕ if

- $C\left(x_{1}, \ldots, x_{n}, 1, \ldots, 1\right)=1$,
$\triangleright C\left(x_{1}, \ldots, x_{n}, F_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, F_{m}\left(x_{1}, \ldots, x_{n}\right)\right)=0$, and
- on any path in C all the variables y_{1}, \ldots, y_{m} occur altogether at most once.

Search Problems

THEOREM

Let $\phi=\bigwedge_{i=1}^{m} C_{i}$ be an unsatisfiable CNF.
The minimal size of $a(1,+k)-$ BP-PS $_{1}\left(k-O B D D-\mathbf{P S}_{1}\right)$ refutation of ϕ is polynomially related to the minimal size of a $(1,+k)-\mathrm{BP}$ ($k-\mathrm{OBDD}$) for Search $_{\phi}$.

Search Problems

THEOREM

Let $\phi=\bigwedge_{i=1}^{m} C_{i}$ be an unsatisfiable CNF.
The minimal size of $a(1,+k)-$ BP-PS $_{1}\left(k-O B D D-\mathbf{P S}_{1}\right)$ refutation of ϕ is polynomially related to the minimal size of a $(1,+k)-\mathrm{BP}$ (k-OBDD) for Search ${ }_{\phi}$.

Note that regular resolution (ordered resolution) is equivalent to 1-BP-PS ${ }_{1}$ (OBDD-PS ${ }_{1}$).

Communication Complexity I

DEFINITION

Communication complexity of $f:\{0,1\}^{n} \rightarrow\{0,1\}$ with respect to a partition Π of $[n](\mathbf{D}(f, \Pi))$ is the minimal number of bits Alice and Bob need to send to each other to compute $f(x)$ if Alice knows only bits of x with indices from Π_{0} and Bob knows only bits of x with indices from Π_{1}.

Communication Complexity I

DEFINITION

Communication complexity of $f:\{0,1\}^{n} \rightarrow\{0,1\}$ with respect to a partition Π of $[n](\mathbf{D}(f, \Pi))$ is the minimal number of bits Alice and Bob need to send to each other to compute $f(x)$ if Alice knows only bits of x with indices from Π_{0} and Bob knows only bits of x with indices from Π_{1}.

DEFINITION

Best communication complexity of $f:\{0,1\}^{n} \rightarrow\{0,1\}\left(\mathbf{D}^{\text {best }}(f)\right)$ is the minimum of $\mathbf{D}(f, \Pi)$ over Π such that $\left|\Pi_{0}-\Pi_{1}\right| \leq 1$.

Lower Bounds I

THEOREM

If D is an b-OBDD for Search $_{\phi}$, then $\mathbf{D}^{\text {best }}\left(\right.$ Search $\left._{\phi}\right) \leq(2 b-1)\lceil\log |D|\rceil$.

Lower Bounds I

THEOREM

If D is an b-OBDD for Search $_{\phi}$, then $\mathbf{D}^{\text {best }}\left(\right.$ Search $\left._{\phi}\right) \leq(2 b-1)\lceil\log |D|\rceil$.

THEOREM (GÖÖS AND PITASSI, 2014)

There are families of formulas ϕ_{n} in k-CNF and partitions Π_{n} such that $\mathbf{D}\left(\right.$ Search $\left._{\phi_{n}}, \Pi_{n}\right) \geq \frac{n}{\log n}$.

Lower Bounds I

THEOREM

If D is an b-OBDD for Search $_{\phi}$, then $\mathbf{D}^{\text {best }}\left(\right.$ Search $\left._{\phi}\right) \leq(2 b-1)\lceil\log |D|\rceil$.

THEOREM (GÖÖS AND PITASSI, 2014)

There are families of formulas ϕ_{n} in k-CNF and partitions Π_{n} such that $\mathbf{D}\left(\right.$ Search $\left._{\phi_{n}}, \Pi_{n}\right) \geq \frac{n}{\log n}$.

THEOREM

There is a transformation \mathcal{T} such that for any large enough ϕ in k-CNF and partition $\Pi,|\mathcal{T}(\phi)|=\operatorname{poly}(|\phi|)$ and $\mathbf{D}\left(\right.$ Search $\left._{\phi}, \Pi\right) \leq \mathbf{D}^{\text {best }}\left(\operatorname{Search}_{\mathcal{T}(\phi)}\right)$.

Tseitin Formulas

DEFINITION

Let G be a connected graph on vertices $V(|V|$ is odd) with edges E. Every edge $e \in E$ has the corresponding propositional variable p_{e}. For every vertex $v \in V$ we write down a formula in CNF that encodes

$$
\sum_{(u, v) \in E} p_{(v, u)} \equiv 1 \quad(\bmod 2)
$$

The conjunction of these formulas is a Tseitin formula TS_{G} for the graph G.

Tseitin Formulas

DEFINITION

Let G be a connected graph on vertices $V(|V|$ is odd) with edges E. Every edge $e \in E$ has the corresponding propositional variable p_{e}. For every vertex $v \in V$ we write down a formula in CNF that encodes

$$
\sum_{(u, v) \in E} p_{(v, u)} \equiv 1 \quad(\bmod 2)
$$

The conjunction of these formulas is a Tseitin formula TS_{G} for the graph G.
Note that if G has small degree, then $\mathbf{D}\left(\right.$ Search $\left._{\mathrm{TS}_{G}}\right)=O(\log |V|)$.

Communication Complexity II

DEFINITION

Communication complexity of $f:\{0,1\}^{n} \rightarrow\{0,1\}$ with respect to a partition Π of $[n]$ with k rounds $\left(\mathbf{D}^{(k)}(f, \Pi)\right)$ is the minimal number of bits Alice and Bob need to send to each other to compute $f(x)$.
Their communication consists of k rounds, on each round one of them sends a string.

Communication Complexity II

DEFINITION

Communication complexity of $f:\{0,1\}^{n} \rightarrow\{0,1\}$ with respect to a partition Π of $[n]$ with k rounds $\left(\mathbf{D}^{(k)}(f, \Pi)\right)$ is the minimal number of bits Alice and Bob need to send to each other to compute $f(x)$.
Their communication consists of k rounds, on each round one of them sends a string.

DEFINITION

Best communication complexity of $f:\{0,1\}^{n} \rightarrow\{0,1\}\left(\mathbf{D}^{(k), \text { best }}(f)\right)$ with k rounds is the minimum of $\mathbf{D}^{(k)}(f, \Pi)$ over Π such that $\left|\Pi_{0}-\Pi_{1}\right| \leq 1$.

Lower Bounds II

DEFINITION

Let $f:\{0,1\}^{n} \rightarrow\{0,1\} . \mathrm{KW}(f) \subseteq\left(f^{-1}(1) \times f^{-1}(0)\right) \times[n]$ is a relation such that

$$
(x, y, i) \in \operatorname{KW}(f) \Longleftrightarrow x_{i} \neq y_{i} .
$$

Lower Bounds II

DEFINITION

Let $f:\{0,1\}^{n} \rightarrow\{0,1\} . \mathrm{KW}(f) \subseteq\left(f^{-1}(1) \times f^{-1}(0)\right) \times[n]$ is a relation such that

$$
(x, y, i) \in \operatorname{KW}(f) \Longleftrightarrow x_{i} \neq y_{i} .
$$

THEOREM (HÅSTAD, 1987)

For any $b>0, \mathbf{D}^{(b)}\left(\mathrm{KW}\left(\oplus_{n}\right)\right) \geq n^{1 / b}$.

Lower Bounds II

THEOREM (HÅSTAD, 1987)

For any $b>0, \mathbf{D}^{(b)}\left(\mathrm{KW}\left(\oplus_{n}\right)\right) \geq n^{1 / b}$.

THEOREM

There are families of graphs G_{n} of constant degree and labeling functions c_{n} such that $\mathbf{D}^{(b), \text { best }}\left(\right.$ Search $\left._{T S_{G}}\right) \geq \mathbf{D}^{(b)}\left(\mathrm{KW}\left(\oplus_{\epsilon n}\right)\right)$ for some $\epsilon>0$ and any $b>0$.

Lower Bounds II

THEOREM (HÅSTAD, 1987)

For any $b>0, \mathbf{D}^{(b)}\left(\mathrm{KW}\left(\oplus_{n}\right)\right) \geq n^{1 / b}$.

THEOREM

There are families of graphs G_{n} of constant degree and labeling functions c_{n} such that $\mathbf{D}^{(b), \text { best }}\left(\right.$ Search $\left._{T S_{G}}\right) \geq \mathbf{D}^{(b)}\left(\mathrm{KW}\left(\oplus_{\epsilon n}\right)\right)$ for some $\epsilon>0$ and any $b>0$.

THEOREM

If D is a b-OBDD for $\operatorname{Search}_{\phi}$, then $\mathbf{D}^{(2 b-1), \text { best }}\left(\operatorname{Search}_{\phi}\right) \leq(2 b-1)\lceil\log |D|\rceil$

Separation I

THEOREM (GARG ET AL, 2018)

Any CP refutation of $\phi \circ \operatorname{Ind}_{m}$ has size at least $n^{w(\phi)}$, where $w(\phi)$ is the minimal width of a resolution refutation of ϕ.

Separation I

THEOREM (GARG ET AL, 2018)

Any CP refutation of $\phi \circ \operatorname{Ind}_{m}$ has size at least $n^{w(\phi)}$, where $w(\phi)$ is the minimal width of a resolution refutation of ϕ.

THEOREM (BONET AND GALESI, 2001)

There is a formula ϕ such that $w(\phi)=\Omega(n)$ and there is an ordered resolution refutation of ϕ of size poly (n).

Separation I

THEOREM (GARG ET AL, 2018)

Any CP refutation of $\phi \circ \operatorname{Ind}_{m}$ has size at least $n^{w(\phi)}$, where $w(\phi)$ is the minimal width of a resolution refutation of ϕ.

THEOREM (BONET AND GALESI, 2001)

There is a formula ϕ such that $w(\phi)=\Omega(n)$ and there is an ordered resolution refutation of ϕ of size poly (n).

THEOREM

If a formula ϕ has an OBDD-PS ${ }_{1}$ refutation of size S, then for any gadget $g:\{0,1\}^{k} \rightarrow\{0,1\}, \phi \circ g$ has a 2 -OBDD-PS ${ }_{1}$ refutation of size $\operatorname{poly}(S,|\phi \circ g|)$.

Separation II

THEOREM (ALEKHNOVICH AND RAZBOROV, 2002)

Any resolution refutation of ϕ^{\oplus} has size at least $2^{w(\phi)}$, where $w(\phi)$ is the minimal width of a resolution refutation of ϕ.

Separation II

THEOREM (ALEKHNOVICH AND RAZBOROV, 2002)

Any resolution refutation of ϕ^{\oplus} has size at least $2^{w(\phi)}$, where $w(\phi)$ is the minimal width of a resolution refutation of ϕ.

THEOREM (BONET AND GALESI, 2001)

There is a formula ϕ in 3-CNF such that $w(\phi)=\Omega(n)$ but there is an ordered resolution refutation of ϕ of size poly (n).

Separation II

THEOREM (ALEKHNOVICH AND RAZBOROV, 2002)

Any resolution refutation of ϕ^{\oplus} has size at least $2^{w(\phi)}$, where $w(\phi)$ is the minimal width of a resolution refutation of ϕ.

THEOREM (BONET AND GALESI, 2001)

There is a formula ϕ in 3-CNF such that $w(\phi)=\Omega(n)$ but there is an ordered resolution refutation of ϕ of size poly (n).

THEOREM

If a formula ϕ has an OBDD-PS ${ }_{1}$ refutation of size S, then for any gadget $g:\{0,1\}^{k} \rightarrow\{0,1\}, \phi \circ g$ has a $\left(1,+2^{k}\right)-$ BP-PS $_{1}$ refutation of size poly $(S,|\phi \circ g|)$.

Open Questions

(1) Is it possible to prove a lower bound on size of $(1,+b)-\mathrm{BP}^{-\mathbf{P S}_{1}}$ refutations of a formula ϕ for $b>0$?

Open Questions

(1) Is it possible to prove a lower bound on size of $(1,+b)-\mathrm{BP}^{-\mathbf{P S}_{1}}$ refutations of a formula ϕ for $b>0$?
(2) Is it possible to show that $\mathbf{C P}$ does not simulate $(1,+b)-\mathrm{BP}^{-\mathrm{PS}_{1}}$?

Open Questions

(1) Is it possible to prove a lower bound on size of $(1,+b)-\mathrm{BP}^{-\mathbf{P S}_{1}}$ refutations of a formula ϕ for $b>0$?
(2) Is it possible to show that CP does not simulate $(1,+b)-\mathrm{BP}^{-\mathrm{PS}_{1}}$?
(3) Are random 3 -CNFs exponentially hard for $(1,+b)$-BP-PS ${ }_{1}$ and k-OBDD-PS ${ }_{1}$?

