Branching Program Complexity of Canonical Search Problems and **Proof Complexity of Formulas**

Authors: Alexander Knop Institute: UC San Diego

Branching Programs

Branching Programs are dag's such that:

- each node is labeled by a variable and has out-degree
 2 (one edge is labeled by a 0 and one is labeled by 1);
- each leaf is labeled by an output value.

Branching Programs

A branching program is read-b if it reads each variable at most btimes.

We say that a branching program is b-OBDD if it is a readb branching program reading all the variables in the same order btimes.

Branching Programs

A branching program is (1, +b)-BP if in every path it reads all the variables except b of them only once.

DEFINITION

Let $\phi = \bigwedge_{i=1}^{m} C_i$ be an unsatisfiable CNF. Search $_{\phi} \subseteq \{0, 1\}^n \times [n]$ is a relation such that $(x, i) \in \text{Search}_{\phi} \iff C_i(x) = 0.$

THEOREM (CHVÁTAL AND SZEMERÉDI, 1991)

Let $\phi = \bigwedge_{i=1}^{m} C_i$ be an unsatisfiable CNF.

The minimal size of a regular (ordered) resolution refutation of ϕ is equal to the minimal size of a read-once branching program (OBDD) for Search_{ϕ}.

THEOREM (CHVÁTAL AND SZEMERÉDI, 1991)

Let $\phi = \bigwedge_{i=1}^{m} C_i$ be an unsatisfiable CNF. The minimal size of a regular (ordered) resolution refutation of ϕ is equal to the minimal size of a read-once branching program (OBDD) for Search_{ϕ}.

This theorem does not hold for resolution and unrestricted branching programs.

$\mathcal{C}\text{-IPS}$

DEFINITION

Let $f_1, \ldots, f_m \in \mathbb{F}[x_1, \ldots, x_n]$. We say that an arithmetic circuit $C \in C$ is a C-**IPS** proof of the unsatisfiability of $f_1(x_1, \ldots, x_n) = \cdots = f_m(x_1, \ldots, x_n) = 0$ if

•
$$C(x_1, ..., x_n, 0, ..., 0) = 0$$
 and

•
$$C(x_1,...,x_n,f_1(x_1,...,x_n),...,f_m(x_1,...,x_n)) = 1.$$

$\mathcal{C}\text{-IPS}$

DEFINITION

Let $f_1, \ldots, f_m \in \mathbb{F}[x_1, \ldots, x_n]$. We say that an arithmetic circuit $C \in C$ is a C-**IPS** proof of the unsatisfiability of $f_1(x_1, \ldots, x_n) = \cdots = f_m(x_1, \ldots, x_n) = 0$ if

•
$$C(x_1, ..., x_n, 0, ..., 0) = 0$$
 and

$$\blacktriangleright C(x_1,\ldots,x_n,f_1(x_1,\ldots,x_n),\ldots,f_m(x_1,\ldots,x_n))=1.$$

Forbes et al. considered roABP-**IPS**, the proof system where *C* is a read-once oblivious algebraic branching program.

$\mathcal{C}\text{-}\mathbf{PS}_1$

DEFINITION

Let $\phi = \bigwedge_{i=1}^{m} F_i$. We say that a branching program $C \in C$ (*C* depends on $x_1, \ldots, x_n, y_1, \ldots, y_m$) is a C-**PS**₁ refutation of ϕ if

•
$$C(x_1,...,x_n,1,...,1) = 1$$
,

- ▶ $C(x_1,...,x_n,F_1(x_1,...,x_n),...,F_m(x_1,...,x_n)) = 0$, and
- on any path in C all the variables y₁,..., y_m occur altogether at most once.

THEOREM

Let $\phi = \bigwedge_{i=1}^{m} C_i$ be an unsatisfiable CNF. The minimal size of a (1, +k)-BP-**PS**₁ (k-OBDD-**PS**₁) refutation of ϕ is polynomially related to the minimal size of a (1, +k)-BP (k-OBDD) for Search_{ϕ}.

THEOREM

Let $\phi = \bigwedge_{i=1}^{m} C_i$ be an unsatisfiable CNF. The minimal size of a (1, +k)-BP-**PS**₁ (k-OBDD-**PS**₁) refutation of ϕ is polynomially related to the minimal size of a (1, +k)-BP (k-OBDD) for Search_{ϕ}.

Note that regular resolution (ordered resolution) is equivalent to 1-BP-PS_1 (OBDD-PS₁).

Communication Complexity I

DEFINITION

Communication complexity of $f: \{0,1\}^n \to \{0,1\}$ with respect to a partition Π of [n] (**D** (f,Π)) is the minimal number of bits Alice and Bob need to send to each other to compute f(x) if Alice knows only bits of x with indices from Π_0 and Bob knows only bits of x with indices from Π_1 .

Communication Complexity I

DEFINITION

Communication complexity of $f: \{0,1\}^n \to \{0,1\}$ with respect to a partition Π of [n] (**D** (f,Π)) is the minimal number of bits Alice and Bob need to send to each other to compute f(x) if Alice knows only bits of x with indices from Π_0 and Bob knows only bits of x with indices from Π_1 .

DEFINITION

Best communication complexity of $f: \{0,1\}^n \to \{0,1\}$ ($\mathbf{D}^{best}(f)$) is the minimum of $\mathbf{D}(f,\Pi)$ over Π such that $|\Pi_0 - \Pi_1| \leq 1$.

THEOREM

If D is an b-OBDD for Search_{ϕ}, then **D**^{best} (Search_{ϕ}) $\leq (2b-1) \lceil \log |D| \rceil$.

THEOREM

If D is an b-OBDD for Search_{ϕ}, then **D**^{best} (Search_{ϕ}) $\leq (2b-1) \lceil \log |D| \rceil$.

THEOREM (GÖÖS AND PITASSI, 2014)

There are families of formulas ϕ_n in k-CNF and partitions Π_n such that $\mathbf{D}(\operatorname{Search}_{\phi_n}, \Pi_n) \geq \frac{n}{\log n}$.

THEOREM

If D is an b-OBDD for Search_{ϕ}, then **D**^{best} (Search_{ϕ}) $\leq (2b-1) \lceil \log |D| \rceil$.

THEOREM (GÖÖS AND PITASSI, 2014)

There are families of formulas ϕ_n in k-CNF and partitions Π_n such that $\mathbf{D}(\operatorname{Search}_{\phi_n}, \Pi_n) \geq \frac{n}{\log n}$.

THEOREM

There is a transformation \mathcal{T} such that for any large enough ϕ in k-CNF and partition Π , $|\mathcal{T}(\phi)| = \text{poly}(|\phi|)$ and **D** (Search_{\phi}, \Pi) \leq **D**^{best} (Search_{\mathcal{T}(\phi)}).

Tseitin Formulas

DEFINITION

Let *G* be a connected graph on vertices V(|V| is odd) with edges *E*. Every edge $e \in E$ has the corresponding propositional variable p_e . For every vertex $v \in V$ we write down a formula in CNF that encodes

$$\sum_{(u,v)\in E} p_{(v,u)} \equiv 1 \pmod{2}.$$

The conjunction of these formulas is a Tseitin formula TS_G for the graph G.

Tseitin Formulas

DEFINITION

Let *G* be a connected graph on vertices V(|V| is odd) with edges *E*. Every edge $e \in E$ has the corresponding propositional variable p_e . For every vertex $v \in V$ we write down a formula in CNF that encodes

$$\sum_{(u,v)\in E} p_{(v,u)} \equiv 1 \pmod{2}.$$

The conjunction of these formulas is a Tseitin formula TS_G for the graph G.

Note that if G has small degree, then **D** (Search_{TS_G}) = $O(\log |V|)$.

Communication Complexity II

DEFINITION

Communication complexity of $f: \{0,1\}^n \to \{0,1\}$ with respect to a partition Π of [n] with k rounds $(\mathbf{D}^{(k)}(f,\Pi))$ is the minimal number of bits Alice and Bob need to send to each other to compute f(x). Their communication consists of k rounds, on each round one of them

sends a string.

Communication Complexity II

DEFINITION

Communication complexity of $f: \{0,1\}^n \to \{0,1\}$ with respect to a partition Π of [n] with k rounds $(\mathbf{D}^{(k)}(f,\Pi))$ is the minimal number of bits Alice and Bob need to send to each other to compute f(x). Their communication consists of k rounds, on each round one of them sends a string.

DEFINITION

Best communication complexity of $f: \{0,1\}^n \to \{0,1\}$ ($\mathbf{D}^{(k),best}(f)$) with k rounds is the minimum of $\mathbf{D}^{(k)}(f,\Pi)$ over Π such that $|\Pi_0 - \Pi_1| \leq 1$.

DEFINITION

Let $f: \{0,1\}^n \to \{0,1\}$. KW $(f) \subseteq (f^{-1}(1) \times f^{-1}(0)) \times [n]$ is a relation such that $(x, y, i) \in \text{KW}(f) \iff x_i \neq y_i.$

DEFINITION

Let $f: \{0,1\}^n \to \{0,1\}$. KW $(f) \subseteq (f^{-1}(1) \times f^{-1}(0)) \times [n]$ is a relation such that $(x, y, i) \in \text{KW}(f) \iff x_i \neq y_i.$

THEOREM (HÅSTAD, 1987)

For any b > 0, $\mathbf{D}^{(b)}(\mathsf{KW}(\oplus_n)) \ge n^{1/b}$.

THEOREM (HÅSTAD, 1987)

For any b > 0, $\mathbf{D}^{(b)}(\mathsf{KW}(\oplus_n)) \ge n^{1/b}$.

THEOREM

There are families of graphs G_n of constant degree and labeling functions c_n such that $\mathbf{D}^{(b), best} \left(\text{Search}_{\mathsf{TS}_G} \right) \geq \mathbf{D}^{(b)} \left(\mathsf{KW} \left(\oplus_{\epsilon n} \right) \right)$ for some $\epsilon > 0$ and any b > 0.

THEOREM (HÅSTAD, 1987)

For any b > 0, $\mathbf{D}^{(b)}(\mathsf{KW}(\oplus_n)) \ge n^{1/b}$.

THEOREM

There are families of graphs G_n of constant degree and labeling functions c_n such that $\mathbf{D}^{(b), \text{best}}(\text{Search}_{\mathsf{TS}_G}) \geq \mathbf{D}^{(b)}(\mathsf{KW}(\oplus_{\epsilon n}))$ for some $\epsilon > 0$ and any b > 0.

THEOREM

If D is a b-OBDD for Search_{ϕ}, then $\mathbf{D}^{(2b-1),best}$ (Search_{ϕ}) $\leq (2b-1) \lceil \log |D| \rceil$

Separation I

THEOREM (GARG ET AL, 2018)

Any **CP** refutation of $\phi \circ \text{Ind}_m$ has size at least $n^{w(\phi)}$, where $w(\phi)$ is the minimal width of a resolution refutation of ϕ .

Separation I

THEOREM (GARG ET AL, 2018)

Any **CP** refutation of $\phi \circ \text{Ind}_m$ has size at least $n^{w(\phi)}$, where $w(\phi)$ is the minimal width of a resolution refutation of ϕ .

THEOREM (BONET AND GALESI, 2001)

There is a formula ϕ such that $w(\phi) = \Omega(n)$ and there is an ordered resolution refutation of ϕ of size poly(n).

Separation I

THEOREM (GARG ET AL, 2018)

Any **CP** refutation of $\phi \circ \text{Ind}_m$ has size at least $n^{w(\phi)}$, where $w(\phi)$ is the minimal width of a resolution refutation of ϕ .

THEOREM (BONET AND GALESI, 2001)

There is a formula ϕ such that $w(\phi) = \Omega(n)$ and there is an ordered resolution refutation of ϕ of size poly(n).

THEOREM

If a formula ϕ has an OBDD-**PS**₁ refutation of size *S*, then for any gadget $g: \{0,1\}^k \rightarrow \{0,1\}, \phi \circ g$ has a 2-OBDD-**PS**₁ refutation of size poly(*S*, $|\phi \circ g|$).

Separation II

THEOREM (ALEKHNOVICH AND RAZBOROV, 2002)

Any resolution refutation of ϕ^{\oplus} has size at least $2^{w(\phi)}$, where $w(\phi)$ is the minimal width of a resolution refutation of ϕ .

Separation II

THEOREM (ALEKHNOVICH AND RAZBOROV, 2002)

Any resolution refutation of ϕ^{\oplus} has size at least $2^{w(\phi)}$, where $w(\phi)$ is the minimal width of a resolution refutation of ϕ .

THEOREM (BONET AND GALESI, 2001)

There is a formula ϕ in 3-CNF such that $w(\phi) = \Omega(n)$ but there is an ordered resolution refutation of ϕ of size poly(n).

Separation II

THEOREM (ALEKHNOVICH AND RAZBOROV, 2002)

Any resolution refutation of ϕ^{\oplus} has size at least $2^{w(\phi)}$, where $w(\phi)$ is the minimal width of a resolution refutation of ϕ .

THEOREM (BONET AND GALESI, 2001)

There is a formula ϕ in 3-CNF such that $w(\phi) = \Omega(n)$ but there is an ordered resolution refutation of ϕ of size poly(n).

THEOREM

If a formula ϕ has an OBDD-**PS**₁ refutation of size S, then for any gadget $g: \{0,1\}^k \rightarrow \{0,1\}, \ \phi \circ g$ has a $(1,+2^k)$ -BP-**PS**₁ refutation of size poly(S, $|\phi \circ g|)$.

Open Questions

1 Is it possible to prove a lower bound on size of (1, +b)-BP-**PS**₁ refutations of a formula ϕ for b > 0?

Open Questions

Is it possible to prove a lower bound on size of (1,+b)-BP-PS₁ refutations of a formula φ for b > 0?
Is it possible to show that CP does not simulate

(1, +b)-BP-**PS**₁?

Open Questions

- (1) Is it possible to prove a lower bound on size of (1, +b)-BP-**PS**₁ refutations of a formula ϕ for b > 0?
- Is it possible to show that CP does not simulate (1,+b)-BP-PS₁?
- Are random 3-CNFs exponentially hard for (1, +b)-BP-PS₁ and k-OBDD-PS₁?