
Oaxaca 2018

Hard satisfiable formulas
for splittings by linear
combinations

Authors:
Dmitry Itsykson, Alexander Knop

Institute:
UC San Diego



DPLL algorithms

DPLL algorithm is an algorithm DA,B parametrized by two
heuristics A and B.

Let φ(x1, . . . , xn) be a formula in CNF and ρ be a partial
substitution to the variables x1, …, xn.
Then DA,B(φ, ρ) determines if φ ∧ ρ is satisfiable and works as
follows.

▶ if ρ contradicts to a clause of φ, then return “no”;
▶ if ρ satisfies φ, then return “yes”;
▶ choose a variable xi using A and choose a Boolean value

b ∈ {0, 1} using B;
▶ If DA,B(φ, ρ ∪ {xi = b}) = “yes”, then return “yes”;
▶ return DA,B(φ, ρ ∪ {xi = 1− b}).

Dmitry Itsykson, Alexander Knop 2



DPLL algorithms

DPLL algorithm is an algorithm DA,B parametrized by two
heuristics A and B.
Let φ(x1, . . . , xn) be a formula in CNF and ρ be a partial
substitution to the variables x1, …, xn.

Then DA,B(φ, ρ) determines if φ ∧ ρ is satisfiable and works as
follows.

▶ if ρ contradicts to a clause of φ, then return “no”;
▶ if ρ satisfies φ, then return “yes”;
▶ choose a variable xi using A and choose a Boolean value

b ∈ {0, 1} using B;
▶ If DA,B(φ, ρ ∪ {xi = b}) = “yes”, then return “yes”;
▶ return DA,B(φ, ρ ∪ {xi = 1− b}).

Dmitry Itsykson, Alexander Knop 2



DPLL algorithms

DPLL algorithm is an algorithm DA,B parametrized by two
heuristics A and B.
Let φ(x1, . . . , xn) be a formula in CNF and ρ be a partial
substitution to the variables x1, …, xn.
Then DA,B(φ, ρ) determines if φ ∧ ρ is satisfiable and works as
follows.

▶ if ρ contradicts to a clause of φ, then return “no”;
▶ if ρ satisfies φ, then return “yes”;
▶ choose a variable xi using A and choose a Boolean value

b ∈ {0, 1} using B;
▶ If DA,B(φ, ρ ∪ {xi = b}) = “yes”, then return “yes”;
▶ return DA,B(φ, ρ ∪ {xi = 1− b}).

Dmitry Itsykson, Alexander Knop 2



DPLL algorithms

DPLL algorithm is an algorithm DA,B parametrized by two
heuristics A and B.
Let φ(x1, . . . , xn) be a formula in CNF and ρ be a partial
substitution to the variables x1, …, xn.
Then DA,B(φ, ρ) determines if φ ∧ ρ is satisfiable and works as
follows.

▶ if ρ contradicts to a clause of φ, then return “no”;

▶ if ρ satisfies φ, then return “yes”;
▶ choose a variable xi using A and choose a Boolean value

b ∈ {0, 1} using B;
▶ If DA,B(φ, ρ ∪ {xi = b}) = “yes”, then return “yes”;
▶ return DA,B(φ, ρ ∪ {xi = 1− b}).

Dmitry Itsykson, Alexander Knop 2



DPLL algorithms

DPLL algorithm is an algorithm DA,B parametrized by two
heuristics A and B.
Let φ(x1, . . . , xn) be a formula in CNF and ρ be a partial
substitution to the variables x1, …, xn.
Then DA,B(φ, ρ) determines if φ ∧ ρ is satisfiable and works as
follows.

▶ if ρ contradicts to a clause of φ, then return “no”;
▶ if ρ satisfies φ, then return “yes”;

▶ choose a variable xi using A and choose a Boolean value
b ∈ {0, 1} using B;

▶ If DA,B(φ, ρ ∪ {xi = b}) = “yes”, then return “yes”;
▶ return DA,B(φ, ρ ∪ {xi = 1− b}).

Dmitry Itsykson, Alexander Knop 2



DPLL algorithms

DPLL algorithm is an algorithm DA,B parametrized by two
heuristics A and B.
Let φ(x1, . . . , xn) be a formula in CNF and ρ be a partial
substitution to the variables x1, …, xn.
Then DA,B(φ, ρ) determines if φ ∧ ρ is satisfiable and works as
follows.

▶ if ρ contradicts to a clause of φ, then return “no”;
▶ if ρ satisfies φ, then return “yes”;
▶ choose a variable xi using A and choose a Boolean value

b ∈ {0, 1} using B;

▶ If DA,B(φ, ρ ∪ {xi = b}) = “yes”, then return “yes”;
▶ return DA,B(φ, ρ ∪ {xi = 1− b}).

Dmitry Itsykson, Alexander Knop 2



DPLL algorithms

DPLL algorithm is an algorithm DA,B parametrized by two
heuristics A and B.
Let φ(x1, . . . , xn) be a formula in CNF and ρ be a partial
substitution to the variables x1, …, xn.
Then DA,B(φ, ρ) determines if φ ∧ ρ is satisfiable and works as
follows.

▶ if ρ contradicts to a clause of φ, then return “no”;
▶ if ρ satisfies φ, then return “yes”;
▶ choose a variable xi using A and choose a Boolean value

b ∈ {0, 1} using B;
▶ If DA,B(φ, ρ ∪ {xi = b}) = “yes”, then return “yes”;

▶ return DA,B(φ, ρ ∪ {xi = 1− b}).

Dmitry Itsykson, Alexander Knop 2



DPLL algorithms

DPLL algorithm is an algorithm DA,B parametrized by two
heuristics A and B.
Let φ(x1, . . . , xn) be a formula in CNF and ρ be a partial
substitution to the variables x1, …, xn.
Then DA,B(φ, ρ) determines if φ ∧ ρ is satisfiable and works as
follows.

▶ if ρ contradicts to a clause of φ, then return “no”;
▶ if ρ satisfies φ, then return “yes”;
▶ choose a variable xi using A and choose a Boolean value

b ∈ {0, 1} using B;
▶ If DA,B(φ, ρ ∪ {xi = b}) = “yes”, then return “yes”;
▶ return DA,B(φ, ρ ∪ {xi = 1− b}).

Dmitry Itsykson, Alexander Knop 2



DPLL algorithms and unsatisfiable formulas
Let us run some DPLL algorithm on

(x ∨ y) ∧ (¬x ∨ ¬y) ∧ (¬y ∨ t) ∧ (y ∨ ¬t) ∧ (x ∨ t) ∧ (¬x ∨ ¬t).

(x ∨ t)

t = 0

(¬y ∨ ¬t)

t = 1

y = 1

(x ∨ y)

y = 0

x = 0

(¬x ∨ ¬t)

t = 1

(¬x ∨ ¬y)

y = 1

(¬y ∨ ¬t)

y = 0

t = 0

x = 1

Dmitry Itsykson, Alexander Knop 3



DPLL algorithms and unsatisfiable formulas
Let us run some DPLL algorithm on

(x ∨ y) ∧ (¬x ∨ ¬y) ∧ (¬y ∨ t) ∧ (y ∨ ¬t) ∧ (x ∨ t) ∧ (¬x ∨ ¬t).

(x ∨ t)

t = 0

(¬y ∨ ¬t)

t = 1

y = 1

(x ∨ y)

y = 0

x = 0

(¬x ∨ ¬t)

t = 1

(¬x ∨ ¬y)

y = 1

(¬y ∨ ¬t)

y = 0

t = 0

x = 1

Dmitry Itsykson, Alexander Knop 3



Complexity of unsatisfiable formulas

Because of the connections with resolution, the lower bounds on
unsatisfiable instances are relatively easy.

THEOREM

Tseitin formulas are exponentially hard for DPLL, i.e., unsatisfiable systems of
linear equations are hard for DPLL.

Dmitry Itsykson, Alexander Knop 4



Complexity of unsatisfiable formulas

Because of the connections with resolution, the lower bounds on
unsatisfiable instances are relatively easy.

THEOREM

Tseitin formulas are exponentially hard for DPLL

, i.e., unsatisfiable systems of
linear equations are hard for DPLL.

Dmitry Itsykson, Alexander Knop 4



Complexity of unsatisfiable formulas

Because of the connections with resolution, the lower bounds on
unsatisfiable instances are relatively easy.

THEOREM

Tseitin formulas are exponentially hard for DPLL, i.e., unsatisfiable systems of
linear equations are hard for DPLL.

Dmitry Itsykson, Alexander Knop 4



Complexity of satisfiable formulas
Satisfiable formulas are more interesting and easier for solvers.

If P = NP, then there are no superpolynomial lower bounds for
DPLL algorithms since heuristic B may choose the correct value.

DEFINITION

We say that DA,B is myopic iff A and B can read K = n1−ε clauses precisely
but they see other clauses without negations and can query the number of
occurrences of literals.

DEFINITION

We say that A and B are drunken iff B chooses the value 1 with probability 1
2
.

THEOREM (ALEKHNOVICH, HIRSCH, AND ITSYKSON, 2005)

Satisfiable linear systems are hard for myopic and drunken DPLL algorithms.

Dmitry Itsykson, Alexander Knop 5



Complexity of satisfiable formulas
Satisfiable formulas are more interesting and easier for solvers.
If P = NP, then there are no superpolynomial lower bounds for
DPLL algorithms since heuristic B may choose the correct value.

DEFINITION

We say that DA,B is myopic iff A and B can read K = n1−ε clauses precisely
but they see other clauses without negations and can query the number of
occurrences of literals.

DEFINITION

We say that A and B are drunken iff B chooses the value 1 with probability 1
2
.

THEOREM (ALEKHNOVICH, HIRSCH, AND ITSYKSON, 2005)

Satisfiable linear systems are hard for myopic and drunken DPLL algorithms.

Dmitry Itsykson, Alexander Knop 5



Complexity of satisfiable formulas
Satisfiable formulas are more interesting and easier for solvers.
If P = NP, then there are no superpolynomial lower bounds for
DPLL algorithms since heuristic B may choose the correct value.

DEFINITION

We say that DA,B is myopic iff A and B can read K = n1−ε clauses precisely
but they see other clauses without negations and can query the number of
occurrences of literals.

DEFINITION

We say that A and B are drunken iff B chooses the value 1 with probability 1
2
.

THEOREM (ALEKHNOVICH, HIRSCH, AND ITSYKSON, 2005)

Satisfiable linear systems are hard for myopic and drunken DPLL algorithms.

Dmitry Itsykson, Alexander Knop 5



Complexity of satisfiable formulas
Satisfiable formulas are more interesting and easier for solvers.
If P = NP, then there are no superpolynomial lower bounds for
DPLL algorithms since heuristic B may choose the correct value.

DEFINITION

We say that DA,B is myopic iff A and B can read K = n1−ε clauses precisely
but they see other clauses without negations and can query the number of
occurrences of literals.

DEFINITION

We say that A and B are drunken iff B chooses the value 1 with probability 1
2
.

THEOREM (ALEKHNOVICH, HIRSCH, AND ITSYKSON, 2005)

Satisfiable linear systems are hard for myopic and drunken DPLL algorithms.

Dmitry Itsykson, Alexander Knop 5



Complexity of satisfiable formulas
Satisfiable formulas are more interesting and easier for solvers.
If P = NP, then there are no superpolynomial lower bounds for
DPLL algorithms since heuristic B may choose the correct value.

DEFINITION

We say that DA,B is myopic iff A and B can read K = n1−ε clauses precisely
but they see other clauses without negations and can query the number of
occurrences of literals.

DEFINITION

We say that A and B are drunken iff B chooses the value 1 with probability 1
2
.

THEOREM (ALEKHNOVICH, HIRSCH, AND ITSYKSON, 2005)

Satisfiable linear systems are hard for myopic and drunken DPLL algorithms.

Dmitry Itsykson, Alexander Knop 5



DPLL(⊕) algorithms
DPLL(⊕) algorithm is an algorithm DA,B parametrized by two
heuristics A and B.

Let φ(x1, . . . , xn) be a formula in CNF and ρ be a system of linear
equations over the variables x1, …, xn.
Then DA,B(φ, ρ) determines if φ ∧ ρ is satisfiable and works as
follows.

▶ if ρ contradicts to a clause of φ, then return “no” (ρ
contradicts to a clause xi1 = σ1 ∨ · · · ∨ xik = σk iff
ρ ∧ (xij = σj) is unsatisfiable for all j ∈ [k]);

▶ if ρ has only one solution which satisfies φ, then return “yes”;
▶ choose a linear combination ℓ of variables x1, …, xn using A

and choose a Boolean value b ∈ {0, 1} using B;
▶ If DA,B(φ, ρ ∪ {ℓ = b}) = “yes”, then return “yes”;
▶ return DA,B(φ, ρ ∪ {ℓ = 1− b}).

Dmitry Itsykson, Alexander Knop 6



DPLL(⊕) algorithms
DPLL(⊕) algorithm is an algorithm DA,B parametrized by two
heuristics A and B.
Let φ(x1, . . . , xn) be a formula in CNF and ρ be a system of linear
equations over the variables x1, …, xn.

Then DA,B(φ, ρ) determines if φ ∧ ρ is satisfiable and works as
follows.

▶ if ρ contradicts to a clause of φ, then return “no” (ρ
contradicts to a clause xi1 = σ1 ∨ · · · ∨ xik = σk iff
ρ ∧ (xij = σj) is unsatisfiable for all j ∈ [k]);

▶ if ρ has only one solution which satisfies φ, then return “yes”;
▶ choose a linear combination ℓ of variables x1, …, xn using A

and choose a Boolean value b ∈ {0, 1} using B;
▶ If DA,B(φ, ρ ∪ {ℓ = b}) = “yes”, then return “yes”;
▶ return DA,B(φ, ρ ∪ {ℓ = 1− b}).

Dmitry Itsykson, Alexander Knop 6



DPLL(⊕) algorithms
DPLL(⊕) algorithm is an algorithm DA,B parametrized by two
heuristics A and B.
Let φ(x1, . . . , xn) be a formula in CNF and ρ be a system of linear
equations over the variables x1, …, xn.
Then DA,B(φ, ρ) determines if φ ∧ ρ is satisfiable and works as
follows.

▶ if ρ contradicts to a clause of φ, then return “no” (ρ
contradicts to a clause xi1 = σ1 ∨ · · · ∨ xik = σk iff
ρ ∧ (xij = σj) is unsatisfiable for all j ∈ [k]);

▶ if ρ has only one solution which satisfies φ, then return “yes”;
▶ choose a linear combination ℓ of variables x1, …, xn using A

and choose a Boolean value b ∈ {0, 1} using B;
▶ If DA,B(φ, ρ ∪ {ℓ = b}) = “yes”, then return “yes”;
▶ return DA,B(φ, ρ ∪ {ℓ = 1− b}).

Dmitry Itsykson, Alexander Knop 6



DPLL(⊕) algorithms
DPLL(⊕) algorithm is an algorithm DA,B parametrized by two
heuristics A and B.
Let φ(x1, . . . , xn) be a formula in CNF and ρ be a system of linear
equations over the variables x1, …, xn.
Then DA,B(φ, ρ) determines if φ ∧ ρ is satisfiable and works as
follows.

▶ if ρ contradicts to a clause of φ, then return “no” (ρ
contradicts to a clause xi1 = σ1 ∨ · · · ∨ xik = σk iff
ρ ∧ (xij = σj) is unsatisfiable for all j ∈ [k]);

▶ if ρ has only one solution which satisfies φ, then return “yes”;
▶ choose a linear combination ℓ of variables x1, …, xn using A

and choose a Boolean value b ∈ {0, 1} using B;
▶ If DA,B(φ, ρ ∪ {ℓ = b}) = “yes”, then return “yes”;
▶ return DA,B(φ, ρ ∪ {ℓ = 1− b}).

Dmitry Itsykson, Alexander Knop 6



DPLL(⊕) algorithms
DPLL(⊕) algorithm is an algorithm DA,B parametrized by two
heuristics A and B.
Let φ(x1, . . . , xn) be a formula in CNF and ρ be a system of linear
equations over the variables x1, …, xn.
Then DA,B(φ, ρ) determines if φ ∧ ρ is satisfiable and works as
follows.

▶ if ρ contradicts to a clause of φ, then return “no” (ρ
contradicts to a clause xi1 = σ1 ∨ · · · ∨ xik = σk iff
ρ ∧ (xij = σj) is unsatisfiable for all j ∈ [k]);

▶ if ρ has only one solution which satisfies φ, then return “yes”;

▶ choose a linear combination ℓ of variables x1, …, xn using A
and choose a Boolean value b ∈ {0, 1} using B;

▶ If DA,B(φ, ρ ∪ {ℓ = b}) = “yes”, then return “yes”;
▶ return DA,B(φ, ρ ∪ {ℓ = 1− b}).

Dmitry Itsykson, Alexander Knop 6



DPLL(⊕) algorithms
DPLL(⊕) algorithm is an algorithm DA,B parametrized by two
heuristics A and B.
Let φ(x1, . . . , xn) be a formula in CNF and ρ be a system of linear
equations over the variables x1, …, xn.
Then DA,B(φ, ρ) determines if φ ∧ ρ is satisfiable and works as
follows.

▶ if ρ contradicts to a clause of φ, then return “no” (ρ
contradicts to a clause xi1 = σ1 ∨ · · · ∨ xik = σk iff
ρ ∧ (xij = σj) is unsatisfiable for all j ∈ [k]);

▶ if ρ has only one solution which satisfies φ, then return “yes”;
▶ choose a linear combination ℓ of variables x1, …, xn using A

and choose a Boolean value b ∈ {0, 1} using B;

▶ If DA,B(φ, ρ ∪ {ℓ = b}) = “yes”, then return “yes”;
▶ return DA,B(φ, ρ ∪ {ℓ = 1− b}).

Dmitry Itsykson, Alexander Knop 6



DPLL(⊕) algorithms
DPLL(⊕) algorithm is an algorithm DA,B parametrized by two
heuristics A and B.
Let φ(x1, . . . , xn) be a formula in CNF and ρ be a system of linear
equations over the variables x1, …, xn.
Then DA,B(φ, ρ) determines if φ ∧ ρ is satisfiable and works as
follows.

▶ if ρ contradicts to a clause of φ, then return “no” (ρ
contradicts to a clause xi1 = σ1 ∨ · · · ∨ xik = σk iff
ρ ∧ (xij = σj) is unsatisfiable for all j ∈ [k]);

▶ if ρ has only one solution which satisfies φ, then return “yes”;
▶ choose a linear combination ℓ of variables x1, …, xn using A

and choose a Boolean value b ∈ {0, 1} using B;
▶ If DA,B(φ, ρ ∪ {ℓ = b}) = “yes”, then return “yes”;

▶ return DA,B(φ, ρ ∪ {ℓ = 1− b}).

Dmitry Itsykson, Alexander Knop 6



DPLL(⊕) algorithms
DPLL(⊕) algorithm is an algorithm DA,B parametrized by two
heuristics A and B.
Let φ(x1, . . . , xn) be a formula in CNF and ρ be a system of linear
equations over the variables x1, …, xn.
Then DA,B(φ, ρ) determines if φ ∧ ρ is satisfiable and works as
follows.

▶ if ρ contradicts to a clause of φ, then return “no” (ρ
contradicts to a clause xi1 = σ1 ∨ · · · ∨ xik = σk iff
ρ ∧ (xij = σj) is unsatisfiable for all j ∈ [k]);

▶ if ρ has only one solution which satisfies φ, then return “yes”;
▶ choose a linear combination ℓ of variables x1, …, xn using A

and choose a Boolean value b ∈ {0, 1} using B;
▶ If DA,B(φ, ρ ∪ {ℓ = b}) = “yes”, then return “yes”;
▶ return DA,B(φ, ρ ∪ {ℓ = 1− b}).

Dmitry Itsykson, Alexander Knop 6



DPLL(⊕) algorithms and unsatisfiable formulas
Let us run some DPLL(⊕) algorithm on

(x ∨ y) ∧ (¬x ∨ ¬y) ∧ (¬y ∨ t) ∧ (y ∨ ¬t) ∧ (x ∨ t) ∧ (¬x ∨ ¬t).

(x ∨ t)

x = 0

(¬x ∨ ¬t)

x = 1

x + t = 0

(x ∨ y)

x = 0

(¬x ∨ ¬y)

x = 1

x + y = 0

(¬y ∨ ¬t)

y = 1

(y ∨ t)

y = 0

x + y = 1

x + t = 1

Dmitry Itsykson, Alexander Knop 7



DPLL(⊕) algorithms and unsatisfiable formulas
Let us run some DPLL(⊕) algorithm on

(x ∨ y) ∧ (¬x ∨ ¬y) ∧ (¬y ∨ t) ∧ (y ∨ ¬t) ∧ (x ∨ t) ∧ (¬x ∨ ¬t).

(x ∨ t)

x = 0

(¬x ∨ ¬t)

x = 1

x + t = 0

(x ∨ y)

x = 0

(¬x ∨ ¬y)

x = 1

x + y = 0

(¬y ∨ ¬t)

y = 1

(y ∨ t)

y = 0

x + y = 1

x + t = 1

Dmitry Itsykson, Alexander Knop 7



Complexity of unsatisfiable formulas

Formula DPLL Res DPLL(⊕)

F2-linear hard hard easy
systems [Itsykson and Sokolov 2014]

Perfect matching 2Θ(n log n) 2Θ(n) poly(n)
in K2n+1 [Itsykson and Sokolov 2014]

PHPn
n+1 2Θ(n log n) 2Θ(n) 2Θ(n)

[Itsykson and Sokolov 2014]
[Oparin 2016]

TS∧
G,c 2Θ(n) 2Θ(n) 2Ω(nϵ)

[Itsykson and Sokolov 2014]

Random 3-CNF 2Θ(n) 2Θ(n) 2Θ(n)
[Garlik and Kolodziejczyk 2017]

Lifted Pebbling 2Ω(n/ log n) poly(n) 2Ω(n/ log n)
[Itsykson and Sokolov 2017]

Dmitry Itsykson, Alexander Knop 8



Complexity of satisfiable formulas

THEOREM

There exists an explicit family of satisfiable CNF formulas Ψn such that any
drunken DPLL(⊕) runs on Ψn at least 2Ω(n) steps with probability at least
1− 2−Ω(n).

Dmitry Itsykson, Alexander Knop 9



Complexity of satisfiable formulas

THEOREM

There exists an explicit family of satisfiable CNF formulas Ψn such that any
drunken DPLL runs on Ψn at least 2Ω(n) steps with probability at least
1− 2−Ω(n).

PLAN OF THE PROOF

▶ Ψn is PHPn
n+1 plus one satisfying assignment;

▶ Prove that w.h.p. a drunken DPLL will make an incorrect substitution;
▶ Adopt the lower bound technique for PHPn

n+1.

Dmitry Itsykson, Alexander Knop 10



Complexity of satisfiable formulas

THEOREM

There exists an explicit family of satisfiable CNF formulas Ψn such that any
drunken DPLL runs on Ψn at least 2Ω(n) steps with probability at least
1− 2−Ω(n).

PLAN OF THE PROOF

▶ Ψn is PHPn
n+1 plus one satisfying assignment;

▶ Prove that w.h.p. a drunken DPLL will make an incorrect substitution;
▶ Adopt the lower bound technique for PHPn

n+1.

Dmitry Itsykson, Alexander Knop 10



The Prover-delayer Game

Let φ(x1, x2, . . . , xn) be a CNF formula; Prover and Delayer are
playing the following game.

▶ Prover asks for the value of xi for some i ∈ [n];
▶ Delayer gives an answer from {0, 1} or “Choose any”; In the

case of “Choose any” Prover chooses the value from {0, 1}
▶ Delayer earns 1 coin for every answer “Choose any”;
▶ The game ends if the current substitution contradicts some

clause of φ.

THEOREM (CF. PUDLAK AND IMPAGLIAZZO, 2001)

If there is a strategy for Delayer such that for every Prover’s strategy, Delayer
earns at least t coins, then the size of any decision tree for φ is at least 2t.

Dmitry Itsykson, Alexander Knop 11



The Prover-delayer Game

Let φ(x1, x2, . . . , xn) be a CNF formula; Prover and Delayer are
playing the following game.

▶ Prover asks for the value of xi for some i ∈ [n];
▶ Delayer gives an answer from {0, 1} or “Choose any”; In the

case of “Choose any” Prover chooses the value from {0, 1}
▶ Delayer earns 1 coin for every answer “Choose any”;
▶ The game ends if the current substitution contradicts some

clause of φ.

THEOREM (CF. PUDLAK AND IMPAGLIAZZO, 2001)

If there is a strategy for Delayer such that for every Prover’s strategy, Delayer
earns at least t coins, then the size of any decision tree for φ is at least 2t.

Dmitry Itsykson, Alexander Knop 11



The Pigeonhole Principle
Let us recall the definition of the pigeonhole principle formula
(PHPn

n+1).

The formula states that it is impossible to put n + 1
pigeons into n holes.

▶ The formulas has n(n + 1) variables
Pn = {pi,j : i ∈ [n + 1], j ∈ [n]} (informally, pi,j = 1 iff the ith
pigeon is in the jth hole).

▶ Long clauses: pi,1 ∨ pi,2 · · · ∨ pi,n for all i ∈ [n + 1]

▶ Short clauses: ¬pi,k ∨ ¬pj,k for all i ̸= j ∈ [n + 1] and k ∈ [n].
▶ We say that a substitution π is proper if it satisfies all the

short clauses.
▶ π properly implies ρ if any proper assignment that satisfy π

also satisfies ρ;
▶ A proper rank of a substitution is the minimal number of

equalities that properly imply all the other equalities.

Dmitry Itsykson, Alexander Knop 12



The Pigeonhole Principle
Let us recall the definition of the pigeonhole principle formula
(PHPn

n+1). The formula states that it is impossible to put n + 1
pigeons into n holes.

▶ The formulas has n(n + 1) variables
Pn = {pi,j : i ∈ [n + 1], j ∈ [n]} (informally, pi,j = 1 iff the ith
pigeon is in the jth hole).

▶ Long clauses: pi,1 ∨ pi,2 · · · ∨ pi,n for all i ∈ [n + 1]

▶ Short clauses: ¬pi,k ∨ ¬pj,k for all i ̸= j ∈ [n + 1] and k ∈ [n].
▶ We say that a substitution π is proper if it satisfies all the

short clauses.
▶ π properly implies ρ if any proper assignment that satisfy π

also satisfies ρ;
▶ A proper rank of a substitution is the minimal number of

equalities that properly imply all the other equalities.

Dmitry Itsykson, Alexander Knop 12



The Pigeonhole Principle
Let us recall the definition of the pigeonhole principle formula
(PHPn

n+1). The formula states that it is impossible to put n + 1
pigeons into n holes.

▶ The formulas has n(n + 1) variables
Pn = {pi,j : i ∈ [n + 1], j ∈ [n]} (informally, pi,j = 1 iff the ith
pigeon is in the jth hole).

▶ Long clauses: pi,1 ∨ pi,2 · · · ∨ pi,n for all i ∈ [n + 1]

▶ Short clauses: ¬pi,k ∨ ¬pj,k for all i ̸= j ∈ [n + 1] and k ∈ [n].
▶ We say that a substitution π is proper if it satisfies all the

short clauses.
▶ π properly implies ρ if any proper assignment that satisfy π

also satisfies ρ;
▶ A proper rank of a substitution is the minimal number of

equalities that properly imply all the other equalities.

Dmitry Itsykson, Alexander Knop 12



The Pigeonhole Principle
Let us recall the definition of the pigeonhole principle formula
(PHPn

n+1). The formula states that it is impossible to put n + 1
pigeons into n holes.

▶ The formulas has n(n + 1) variables
Pn = {pi,j : i ∈ [n + 1], j ∈ [n]} (informally, pi,j = 1 iff the ith
pigeon is in the jth hole).

▶ Long clauses: pi,1 ∨ pi,2 · · · ∨ pi,n for all i ∈ [n + 1]

▶ Short clauses: ¬pi,k ∨ ¬pj,k for all i ̸= j ∈ [n + 1] and k ∈ [n].

▶ We say that a substitution π is proper if it satisfies all the
short clauses.

▶ π properly implies ρ if any proper assignment that satisfy π
also satisfies ρ;

▶ A proper rank of a substitution is the minimal number of
equalities that properly imply all the other equalities.

Dmitry Itsykson, Alexander Knop 12



The Pigeonhole Principle
Let us recall the definition of the pigeonhole principle formula
(PHPn

n+1). The formula states that it is impossible to put n + 1
pigeons into n holes.

▶ The formulas has n(n + 1) variables
Pn = {pi,j : i ∈ [n + 1], j ∈ [n]} (informally, pi,j = 1 iff the ith
pigeon is in the jth hole).

▶ Long clauses: pi,1 ∨ pi,2 · · · ∨ pi,n for all i ∈ [n + 1]

▶ Short clauses: ¬pi,k ∨ ¬pj,k for all i ̸= j ∈ [n + 1] and k ∈ [n].
▶ We say that a substitution π is proper if it satisfies all the

short clauses.
▶ π properly implies ρ if any proper assignment that satisfy π

also satisfies ρ;
▶ A proper rank of a substitution is the minimal number of

equalities that properly imply all the other equalities.
Dmitry Itsykson, Alexander Knop 12



A Lower Bound on Unsatisfiable Instances

LEMMA

Let a substitution π to the variables Pn has a proper rank at most n − 1 and
can be extended to a proper substitution. Then for all i ∈ [n + 1] there is a
proper solution that satisfies pi,1 ∨ pi,2 ∨ · · · ∨ pi,n.

THEOREM

If a substitution π to the variables Pn has a proper rank at most n−1
2

and can
be extended to a proper substitution, then any decision tree for PHPn

n+1 ∧ π has
size at least 2

n−1
2

PROOF.

Strategy of Delayer is the following: if the value of xi is properly implied from
the current substitution, then return it, otherwise, return “Choose any”.
“Choose any” may increase the proper rank by at most 1. When the game ends
the current substitution contradicts to all the long clauses.
Hence, Delayer earns at least n−1

2
coins.

Dmitry Itsykson, Alexander Knop 13



A Lower Bound on Unsatisfiable Instances

LEMMA

Let a substitution π to the variables Pn has a proper rank at most n − 1 and
can be extended to a proper substitution. Then for all i ∈ [n + 1] there is a
proper solution that satisfies pi,1 ∨ pi,2 ∨ · · · ∨ pi,n.

THEOREM

If a substitution π to the variables Pn has a proper rank at most n−1
2

and can
be extended to a proper substitution, then any decision tree for PHPn

n+1 ∧ π has
size at least 2

n−1
2

PROOF.

Strategy of Delayer is the following: if the value of xi is properly implied from
the current substitution, then return it, otherwise, return “Choose any”.
“Choose any” may increase the proper rank by at most 1. When the game ends
the current substitution contradicts to all the long clauses.
Hence, Delayer earns at least n−1

2
coins.

Dmitry Itsykson, Alexander Knop 13



A Lower Bound on Unsatisfiable Instances

LEMMA

Let a substitution π to the variables Pn has a proper rank at most n − 1 and
can be extended to a proper substitution. Then for all i ∈ [n + 1] there is a
proper solution that satisfies pi,1 ∨ pi,2 ∨ · · · ∨ pi,n.

THEOREM

If a substitution π to the variables Pn has a proper rank at most n−1
2

and can
be extended to a proper substitution, then any decision tree for PHPn

n+1 ∧ π has
size at least 2

n−1
2

PROOF.

Strategy of Delayer is the following: if the value of xi is properly implied from
the current substitution, then return it, otherwise, return “Choose any”.

“Choose any” may increase the proper rank by at most 1. When the game ends
the current substitution contradicts to all the long clauses.
Hence, Delayer earns at least n−1

2
coins.

Dmitry Itsykson, Alexander Knop 13



A Lower Bound on Unsatisfiable Instances

LEMMA

Let a substitution π to the variables Pn has a proper rank at most n − 1 and
can be extended to a proper substitution. Then for all i ∈ [n + 1] there is a
proper solution that satisfies pi,1 ∨ pi,2 ∨ · · · ∨ pi,n.

THEOREM

If a substitution π to the variables Pn has a proper rank at most n−1
2

and can
be extended to a proper substitution, then any decision tree for PHPn

n+1 ∧ π has
size at least 2

n−1
2

PROOF.

Strategy of Delayer is the following: if the value of xi is properly implied from
the current substitution, then return it, otherwise, return “Choose any”.
“Choose any” may increase the proper rank by at most 1. When the game ends
the current substitution contradicts to all the long clauses.

Hence, Delayer earns at least n−1
2

coins.

Dmitry Itsykson, Alexander Knop 13



A Lower Bound on Unsatisfiable Instances

LEMMA

Let a substitution π to the variables Pn has a proper rank at most n − 1 and
can be extended to a proper substitution. Then for all i ∈ [n + 1] there is a
proper solution that satisfies pi,1 ∨ pi,2 ∨ · · · ∨ pi,n.

THEOREM

If a substitution π to the variables Pn has a proper rank at most n−1
2

and can
be extended to a proper substitution, then any decision tree for PHPn

n+1 ∧ π has
size at least 2

n−1
2

PROOF.

Strategy of Delayer is the following: if the value of xi is properly implied from
the current substitution, then return it, otherwise, return “Choose any”.
“Choose any” may increase the proper rank by at most 1. When the game ends
the current substitution contradicts to all the long clauses.
Hence, Delayer earns at least n−1

2
coins.

Dmitry Itsykson, Alexander Knop 13



Hard Satisfiable Formula

Let Φ =
∧
i∈I

Ci be a CNF formula on the variables x1, …, xn.

Φ+ σ =
∧

i∈I,j∈[n]
Ci ∨ xσ(xj)

j , where σ is an assignment, x0 denotes

¬x, and x1 denotes x.

LEMMA

If Φ is unsatisfiable, then σ is the only satisfying assignment of Φ+ σ.

THEOREM

If σ is a proper assignment, then PHPn
n+1 + σ is hard for drunken DPLL

algorithms.

Dmitry Itsykson, Alexander Knop 14



Hard Satisfiable Formula

Let Φ =
∧
i∈I

Ci be a CNF formula on the variables x1, …, xn.

Φ+ σ =
∧

i∈I,j∈[n]
Ci ∨ xσ(xj)

j , where σ is an assignment, x0 denotes

¬x, and x1 denotes x.

LEMMA

If Φ is unsatisfiable, then σ is the only satisfying assignment of Φ+ σ.

THEOREM

If σ is a proper assignment, then PHPn
n+1 + σ is hard for drunken DPLL

algorithms.

Dmitry Itsykson, Alexander Knop 14



Hard Satisfiable Formula

Let Φ =
∧
i∈I

Ci be a CNF formula on the variables x1, …, xn.

Φ+ σ =
∧

i∈I,j∈[n]
Ci ∨ xσ(xj)

j , where σ is an assignment, x0 denotes

¬x, and x1 denotes x.

LEMMA

If Φ is unsatisfiable, then σ is the only satisfying assignment of Φ+ σ.

THEOREM

If σ is a proper assignment, then PHPn
n+1 + σ is hard for drunken DPLL

algorithms.

Dmitry Itsykson, Alexander Knop 14



Hard Satisfiable Formula

Let Φ =
∧
i∈I

Ci be a CNF formula on the variables x1, …, xn.

Φ+ σ =
∧

i∈I,j∈[n]
Ci ∨ xσ(xj)

j , where σ is an assignment, x0 denotes

¬x, and x1 denotes x.

LEMMA

If Φ is unsatisfiable, then σ is the only satisfying assignment of Φ+ σ.

THEOREM

If σ is a proper assignment, then PHPn
n+1 + σ is hard for drunken DPLL

algorithms.

Dmitry Itsykson, Alexander Knop 14



Hard Satisfiable Formula

THEOREM

If σ is a proper assignment, then PHPn
n+1 + σ is hard for drunken DPLL

algorithms.

LEMMA

Let a substitution π to the variables Pn has a proper rank k ≤ n − 1 and can
be extended to a proper substitution. Then there are at least two proper
extensions of π.

PROOF.

Consider the moment when the solution is found, the current substitution has
proper rank at least n − 1.

Dmitry Itsykson, Alexander Knop 15



Hard Satisfiable Formula

THEOREM

If σ is a proper assignment, then PHPn
n+1 + σ is hard for drunken DPLL

algorithms.

LEMMA

Let a substitution π to the variables Pn has a proper rank k ≤ n − 1 and can
be extended to a proper substitution. Then there are at least two proper
extensions of π.

PROOF.

Consider the moment when the solution is found, the current substitution has
proper rank at least n − 1.

Dmitry Itsykson, Alexander Knop 15



Hard Satisfiable Formula

THEOREM

If σ is a proper assignment, then PHPn
n+1 + σ is hard for drunken DPLL

algorithms.

LEMMA

Let a substitution π to the variables Pn has a proper rank k ≤ n − 1 and can
be extended to a proper substitution. Then there are at least two proper
extensions of π.

PROOF.

Consider the moment when the solution is found, the current substitution has
proper rank at least n − 1.

Dmitry Itsykson, Alexander Knop 15



Hard Satisfiable Formula

THEOREM

If σ is a proper assignment, then PHPn
n+1 + σ is hard for drunken DPLL

algorithms.

PROOF.

Consider the moment when the solution is found, the current substitution has
proper rank at least n − 1. Consider the moments on the acceptance branch
when the proper rank grows 0 → 1, 1 → 2, …, n−1

2
− 1 → n−1

2
.

Note that the probability that the algorithm deviates from the acceptance path
in one of these moments is 1− 2−

n−1
2 . After the deviation: (PHPn

n+1 + σ)∧ π is
unsatisfiable, π can be extended to a proper substitution and has a proper rank
n−1
2

.
Decision tree for (PHPn

n+1 + σ) ∧ π also a Decision tree for PHPn
n+1 ∧ π. And

hence it has size at least 2
n−1
2 .

Dmitry Itsykson, Alexander Knop 16



Hard Satisfiable Formula

THEOREM

If σ is a proper assignment, then PHPn
n+1 + σ is hard for drunken DPLL

algorithms.

PROOF.

Consider the moment when the solution is found, the current substitution has
proper rank at least n − 1. Consider the moments on the acceptance branch
when the proper rank grows 0 → 1, 1 → 2, …, n−1

2
− 1 → n−1

2
.

Note that the probability that the algorithm deviates from the acceptance path
in one of these moments is 1− 2−

n−1
2 .

After the deviation: (PHPn
n+1 + σ)∧ π is

unsatisfiable, π can be extended to a proper substitution and has a proper rank
n−1
2

.
Decision tree for (PHPn

n+1 + σ) ∧ π also a Decision tree for PHPn
n+1 ∧ π. And

hence it has size at least 2
n−1
2 .

Dmitry Itsykson, Alexander Knop 16



Hard Satisfiable Formula

THEOREM

If σ is a proper assignment, then PHPn
n+1 + σ is hard for drunken DPLL

algorithms.

PROOF.

Consider the moment when the solution is found, the current substitution has
proper rank at least n − 1. Consider the moments on the acceptance branch
when the proper rank grows 0 → 1, 1 → 2, …, n−1

2
− 1 → n−1

2
.

Note that the probability that the algorithm deviates from the acceptance path
in one of these moments is 1− 2−

n−1
2 . After the deviation: (PHPn

n+1 + σ)∧ π is
unsatisfiable, π can be extended to a proper substitution and has a proper rank
n−1
2

.

Decision tree for (PHPn
n+1 + σ) ∧ π also a Decision tree for PHPn

n+1 ∧ π. And
hence it has size at least 2

n−1
2 .

Dmitry Itsykson, Alexander Knop 16



Hard Satisfiable Formula

THEOREM

If σ is a proper assignment, then PHPn
n+1 + σ is hard for drunken DPLL

algorithms.

PROOF.

Consider the moment when the solution is found, the current substitution has
proper rank at least n − 1. Consider the moments on the acceptance branch
when the proper rank grows 0 → 1, 1 → 2, …, n−1

2
− 1 → n−1

2
.

Note that the probability that the algorithm deviates from the acceptance path
in one of these moments is 1− 2−

n−1
2 . After the deviation: (PHPn

n+1 + σ)∧ π is
unsatisfiable, π can be extended to a proper substitution and has a proper rank
n−1
2

.
Decision tree for (PHPn

n+1 + σ) ∧ π also a Decision tree for PHPn
n+1 ∧ π.

And
hence it has size at least 2

n−1
2 .

Dmitry Itsykson, Alexander Knop 16



Hard Satisfiable Formula

THEOREM

If σ is a proper assignment, then PHPn
n+1 + σ is hard for drunken DPLL

algorithms.

PROOF.

Consider the moment when the solution is found, the current substitution has
proper rank at least n − 1. Consider the moments on the acceptance branch
when the proper rank grows 0 → 1, 1 → 2, …, n−1

2
− 1 → n−1

2
.

Note that the probability that the algorithm deviates from the acceptance path
in one of these moments is 1− 2−

n−1
2 . After the deviation: (PHPn

n+1 + σ)∧ π is
unsatisfiable, π can be extended to a proper substitution and has a proper rank
n−1
2

.
Decision tree for (PHPn

n+1 + σ) ∧ π also a Decision tree for PHPn
n+1 ∧ π. And

hence it has size at least 2
n−1
2 .

Dmitry Itsykson, Alexander Knop 16



Open Questions

1 Good models of CDCL algorithms.

2 Lower bounds for DPLL(⊕) algorithms for satisfiable
O(1)-CNF formulas. Or even SETH lower bounds on
DPLL(⊕) algorithms.

3 Lower bounds for myopic DPLL(⊕) algorithms.
4 Lower bounds for Res(⊕), the resolution that operates with

disjunctions of linear equations.
5 DPLL(⊕) or even CDCL(⊕) solvers working well on the

industrial instances.

Dmitry Itsykson, Alexander Knop 17



Open Questions

1 Good models of CDCL algorithms.
2 Lower bounds for DPLL(⊕) algorithms for satisfiable

O(1)-CNF formulas.

Or even SETH lower bounds on
DPLL(⊕) algorithms.

3 Lower bounds for myopic DPLL(⊕) algorithms.
4 Lower bounds for Res(⊕), the resolution that operates with

disjunctions of linear equations.
5 DPLL(⊕) or even CDCL(⊕) solvers working well on the

industrial instances.

Dmitry Itsykson, Alexander Knop 17



Open Questions

1 Good models of CDCL algorithms.
2 Lower bounds for DPLL(⊕) algorithms for satisfiable

O(1)-CNF formulas. Or even SETH lower bounds on
DPLL(⊕) algorithms.

3 Lower bounds for myopic DPLL(⊕) algorithms.

4 Lower bounds for Res(⊕), the resolution that operates with
disjunctions of linear equations.

5 DPLL(⊕) or even CDCL(⊕) solvers working well on the
industrial instances.

Dmitry Itsykson, Alexander Knop 17



Open Questions

1 Good models of CDCL algorithms.
2 Lower bounds for DPLL(⊕) algorithms for satisfiable

O(1)-CNF formulas. Or even SETH lower bounds on
DPLL(⊕) algorithms.

3 Lower bounds for myopic DPLL(⊕) algorithms.
4 Lower bounds for Res(⊕), the resolution that operates with

disjunctions of linear equations.

5 DPLL(⊕) or even CDCL(⊕) solvers working well on the
industrial instances.

Dmitry Itsykson, Alexander Knop 17



Open Questions

1 Good models of CDCL algorithms.
2 Lower bounds for DPLL(⊕) algorithms for satisfiable

O(1)-CNF formulas. Or even SETH lower bounds on
DPLL(⊕) algorithms.

3 Lower bounds for myopic DPLL(⊕) algorithms.
4 Lower bounds for Res(⊕), the resolution that operates with

disjunctions of linear equations.
5 DPLL(⊕) or even CDCL(⊕) solvers working well on the

industrial instances.

Dmitry Itsykson, Alexander Knop 17


