Hard satisfiable formulas for splittings by linear combinations

Authors:
Dmitry Itsykson, Alexander Knop

Institute:
UC San Diego

DPLL algorithms

DPLL algorithm is an algorithm $\mathcal{D}_{A, B}$ parametrized by two heuristics A and B.

DPLL algorithms

DPLL algorithm is an algorithm $\mathcal{D}_{A, B}$ parametrized by two heuristics A and B.
Let $\varphi\left(x_{1}, \ldots, x_{n}\right)$ be a formula in CNF and ρ be a partial substitution to the variables x_{1}, \ldots, x_{n}.

DPLL algorithms

DPLL algorithm is an algorithm $\mathcal{D}_{A, B}$ parametrized by two heuristics A and B. Let $\varphi\left(x_{1}, \ldots, x_{n}\right)$ be a formula in CNF and ρ be a partial substitution to the variables x_{1}, \ldots, x_{n}. Then $\mathcal{D}_{A, B}(\varphi, \rho)$ determines if $\varphi \wedge \rho$ is satisfiable and works as follows.

DPLL algorithms

DPLL algorithm is an algorithm $\mathcal{D}_{A, B}$ parametrized by two heuristics A and B. Let $\varphi\left(x_{1}, \ldots, x_{n}\right)$ be a formula in CNF and ρ be a partial substitution to the variables x_{1}, \ldots, x_{n}. Then $\mathcal{D}_{A, B}(\varphi, \rho)$ determines if $\varphi \wedge \rho$ is satisfiable and works as follows.

- if ρ contradicts to a clause of φ, then return "no";

DPLL algorithms

DPLL algorithm is an algorithm $\mathcal{D}_{A, B}$ parametrized by two heuristics A and B. Let $\varphi\left(x_{1}, \ldots, x_{n}\right)$ be a formula in CNF and ρ be a partial substitution to the variables x_{1}, \ldots, x_{n}. Then $\mathcal{D}_{A, B}(\varphi, \rho)$ determines if $\varphi \wedge \rho$ is satisfiable and works as follows.

- if ρ contradicts to a clause of φ, then return "no";
- if ρ satisfies φ, then return "yes";

DPLL algorithms

DPLL algorithm is an algorithm $\mathcal{D}_{A, B}$ parametrized by two heuristics A and B. Let $\varphi\left(x_{1}, \ldots, x_{n}\right)$ be a formula in CNF and ρ be a partial substitution to the variables x_{1}, \ldots, x_{n}. Then $\mathcal{D}_{A, B}(\varphi, \rho)$ determines if $\varphi \wedge \rho$ is satisfiable and works as follows.

- if ρ contradicts to a clause of φ, then return "no";
- if ρ satisfies φ, then return "yes";
- choose a variable x_{i} using A and choose a Boolean value $b \in\{0,1\}$ using B;

DPLL algorithms

DPLL algorithm is an algorithm $\mathcal{D}_{A, B}$ parametrized by two heuristics A and B. Let $\varphi\left(x_{1}, \ldots, x_{n}\right)$ be a formula in CNF and ρ be a partial substitution to the variables x_{1}, \ldots, x_{n}. Then $\mathcal{D}_{A, B}(\varphi, \rho)$ determines if $\varphi \wedge \rho$ is satisfiable and works as follows.

- if ρ contradicts to a clause of φ, then return "no";
- if ρ satisfies φ, then return "yes";
- choose a variable x_{i} using A and choose a Boolean value $b \in\{0,1\}$ using B;
- If $\mathcal{D}_{A, B}\left(\varphi, \rho \cup\left\{x_{i}=b\right\}\right)=$ "yes", then return "yes";

DPLL algorithms

DPLL algorithm is an algorithm $\mathcal{D}_{A, B}$ parametrized by two heuristics A and B. Let $\varphi\left(x_{1}, \ldots, x_{n}\right)$ be a formula in CNF and ρ be a partial substitution to the variables x_{1}, \ldots, x_{n}. Then $\mathcal{D}_{A, B}(\varphi, \rho)$ determines if $\varphi \wedge \rho$ is satisfiable and works as follows.

- if ρ contradicts to a clause of φ, then return "no";
- if ρ satisfies φ, then return "yes";
- choose a variable x_{i} using A and choose a Boolean value $b \in\{0,1\}$ using B;
- If $\mathcal{D}_{A, B}\left(\varphi, \rho \cup\left\{x_{i}=b\right\}\right)=$ "yes", then return "yes";
- return $\mathcal{D}_{A, B}\left(\varphi, \rho \cup\left\{x_{i}=1-b\right\}\right)$.

DPLL algorithms and unsatisfiable formulas

Let us run some DPLL algorithm on

$$
(x \vee y) \wedge(\neg x \vee \neg y) \wedge(\neg y \vee t) \wedge(y \vee \neg t) \wedge(x \vee t) \wedge(\neg x \vee \neg t)
$$

DPLL algorithms and unsatisfiable formulas

Let us run some DPLL algorithm on

$$
(x \vee y) \wedge(\neg x \vee \neg y) \wedge(\neg y \vee t) \wedge(y \vee \neg t) \wedge(x \vee t) \wedge(\neg x \vee \neg t)
$$

Complexity of unsatisfiable formulas

Because of the connections with resolution, the lower bounds on unsatisfiable instances are relatively easy.

Complexity of unsatisfiable formulas

Because of the connections with resolution, the lower bounds on unsatisfiable instances are relatively easy.

THEOREM
Tseitin formulas are exponentially hard for DPLL

Complexity of unsatisfiable formulas

Because of the connections with resolution, the lower bounds on unsatisfiable instances are relatively easy.

THEOREM

Tseitin formulas are exponentially hard for DPLL, i.e., unsatisfiable systems of linear equations are hard for DPLL.

Complexity of satisfiable formulas

Satisfiable formulas are more interesting and easier for solvers.

Complexity of satisfiable formulas

Satisfiable formulas are more interesting and easier for solvers. If $\mathbf{P}=\mathbf{N P}$, then there are no superpolynomial lower bounds for DPLL algorithms since heuristic B may choose the correct value.

Complexity of satisfiable formulas

Satisfiable formulas are more interesting and easier for solvers. If $\mathbf{P}=\mathbf{N P}$, then there are no superpolynomial lower bounds for DPLL algorithms since heuristic B may choose the correct value.

DEFINITION

We say that $\mathcal{D}_{A, B}$ is myopic iff A and B can read $K=n^{1-\varepsilon}$ clauses precisely but they see other clauses without negations and can query the number of occurrences of literals.

Complexity of satisfiable formulas

Satisfiable formulas are more interesting and easier for solvers. If $\mathbf{P}=\mathbf{N P}$, then there are no superpolynomial lower bounds for DPLL algorithms since heuristic B may choose the correct value.

DEFINITION

We say that $\mathcal{D}_{A, B}$ is myopic iff A and B can read $K=n^{1-\varepsilon}$ clauses precisely but they see other clauses without negations and can query the number of occurrences of literals.

DEFINITION

We say that A and B are drunken iff B chooses the value 1 with probability $\frac{1}{2}$.

Complexity of satisfiable formulas

Satisfiable formulas are more interesting and easier for solvers. If $\mathbf{P}=\mathbf{N P}$, then there are no superpolynomial lower bounds for DPLL algorithms since heuristic B may choose the correct value.

DEFINITION

We say that $\mathcal{D}_{A, B}$ is myopic iff A and B can read $K=n^{1-\varepsilon}$ clauses precisely but they see other clauses without negations and can query the number of occurrences of literals.

DEFINITION

We say that A and B are drunken iff B chooses the value 1 with probability $\frac{1}{2}$.

> THEOREM (ALEKHNOVICH, HIRSCH, AND ITSYKSON, 2005)

Satisfiable linear systems are hard for myopic and drunken DPLL algorithms.

DPLL (\oplus) algorithms

$\operatorname{DPLL}(\oplus)$ algorithm is an algorithm $\mathcal{D}_{A, B}$ parametrized by two heuristics A and B.

DPLL (\oplus) algorithms

$\operatorname{DPLL}(\oplus)$ algorithm is an algorithm $\mathcal{D}_{A, B}$ parametrized by two heuristics A and B.
Let $\varphi\left(x_{1}, \ldots, x_{n}\right)$ be a formula in CNF and ρ be a system of linear equations over the variables x_{1}, \ldots, x_{n}.

DPLL (\oplus) algorithms

$\operatorname{DPLL}(\oplus)$ algorithm is an algorithm $\mathcal{D}_{A, B}$ parametrized by two heuristics A and B.
Let $\varphi\left(x_{1}, \ldots, x_{n}\right)$ be a formula in CNF and ρ be a system of linear equations over the variables x_{1}, \ldots, x_{n}.
Then $\mathcal{D}_{A, B}(\varphi, \rho)$ determines if $\varphi \wedge \rho$ is satisfiable and works as follows.

DPLL (\oplus) algorithms

$\operatorname{DPLL}(\oplus)$ algorithm is an algorithm $\mathcal{D}_{A, B}$ parametrized by two heuristics A and B.
Let $\varphi\left(x_{1}, \ldots, x_{n}\right)$ be a formula in CNF and ρ be a system of linear equations over the variables x_{1}, \ldots, x_{n}.
Then $\mathcal{D}_{A, B}(\varphi, \rho)$ determines if $\varphi \wedge \rho$ is satisfiable and works as follows.

- if ρ contradicts to a clause of φ, then return "no" (ρ contradicts to a clause $x_{i_{1}}=\sigma_{1} \vee \cdots \vee x_{i_{k}}=\sigma_{k}$ iff $\rho \wedge\left(x_{i j}=\sigma_{j}\right)$ is unsatisfiable for all $\left.j \in[k]\right)$;

DPLL (\oplus) algorithms

$\operatorname{DPLL}(\oplus)$ algorithm is an algorithm $\mathcal{D}_{A, B}$ parametrized by two heuristics A and B.
Let $\varphi\left(x_{1}, \ldots, x_{n}\right)$ be a formula in CNF and ρ be a system of linear equations over the variables x_{1}, \ldots, x_{n}.
Then $\mathcal{D}_{A, B}(\varphi, \rho)$ determines if $\varphi \wedge \rho$ is satisfiable and works as follows.

- if ρ contradicts to a clause of φ, then return "no" (ρ contradicts to a clause $x_{i_{1}}=\sigma_{1} \vee \cdots \vee x_{i_{k}}=\sigma_{k}$ iff $\rho \wedge\left(x_{i j}=\sigma_{j}\right)$ is unsatisfiable for all $\left.j \in[k]\right)$;
- if ρ has only one solution which satisfies φ, then return "yes";

DPLL (\oplus) algorithms

$\operatorname{DPLL}(\oplus)$ algorithm is an algorithm $\mathcal{D}_{A, B}$ parametrized by two heuristics A and B.
Let $\varphi\left(x_{1}, \ldots, x_{n}\right)$ be a formula in CNF and ρ be a system of linear equations over the variables x_{1}, \ldots, x_{n}.
Then $\mathcal{D}_{A, B}(\varphi, \rho)$ determines if $\varphi \wedge \rho$ is satisfiable and works as follows.

- if ρ contradicts to a clause of φ, then return "no" (ρ contradicts to a clause $x_{i_{1}}=\sigma_{1} \vee \cdots \vee x_{i_{k}}=\sigma_{k}$ iff $\rho \wedge\left(x_{i j}=\sigma_{j}\right)$ is unsatisfiable for all $\left.j \in[k]\right)$;
- if ρ has only one solution which satisfies φ, then return "yes";
- choose a linear combination ℓ of variables x_{1}, \ldots, x_{n} using A and choose a Boolean value $b \in\{0,1\}$ using B;

DPLL (\oplus) algorithms

$\operatorname{DPLL}(\oplus)$ algorithm is an algorithm $\mathcal{D}_{A, B}$ parametrized by two heuristics A and B.
Let $\varphi\left(x_{1}, \ldots, x_{n}\right)$ be a formula in CNF and ρ be a system of linear equations over the variables x_{1}, \ldots, x_{n}.
Then $\mathcal{D}_{A, B}(\varphi, \rho)$ determines if $\varphi \wedge \rho$ is satisfiable and works as follows.

- if ρ contradicts to a clause of φ, then return "no" (ρ contradicts to a clause $x_{i_{1}}=\sigma_{1} \vee \cdots \vee x_{i_{k}}=\sigma_{k}$ iff $\rho \wedge\left(x_{i j}=\sigma_{j}\right)$ is unsatisfiable for all $\left.j \in[k]\right)$;
- if ρ has only one solution which satisfies φ, then return "yes";
- choose a linear combination ℓ of variables x_{1}, \ldots, x_{n} using A and choose a Boolean value $b \in\{0,1\}$ using B;
- If $\mathcal{D}_{A, B}(\varphi, \rho \cup\{\ell=b\})=$ "yes", then return "yes";

DPLL (\oplus) algorithms

$\operatorname{DPLL}(\oplus)$ algorithm is an algorithm $\mathcal{D}_{A, B}$ parametrized by two heuristics A and B.
Let $\varphi\left(x_{1}, \ldots, x_{n}\right)$ be a formula in CNF and ρ be a system of linear equations over the variables x_{1}, \ldots, x_{n}.
Then $\mathcal{D}_{A, B}(\varphi, \rho)$ determines if $\varphi \wedge \rho$ is satisfiable and works as follows.

- if ρ contradicts to a clause of φ, then return "no" (ρ contradicts to a clause $x_{i_{1}}=\sigma_{1} \vee \cdots \vee x_{i_{k}}=\sigma_{k}$ iff $\rho \wedge\left(x_{i j}=\sigma_{j}\right)$ is unsatisfiable for all $\left.j \in[k]\right)$;
- if ρ has only one solution which satisfies φ, then return "yes";
- choose a linear combination ℓ of variables x_{1}, \ldots, x_{n} using A and choose a Boolean value $b \in\{0,1\}$ using B;
- If $\mathcal{D}_{A, B}(\varphi, \rho \cup\{\ell=b\})=$ "yes", then return "yes";
- return $\mathcal{D}_{A, B}(\varphi, \rho \cup\{\ell=1-b\})$.

DPLL (\oplus) algorithms and unsatisfiable formulas

Let us run some $\operatorname{DPLL}(\oplus)$ algorithm on

$$
(x \vee y) \wedge(\neg x \vee \neg y) \wedge(\neg y \vee t) \wedge(y \vee \neg t) \wedge(x \vee t) \wedge(\neg x \vee \neg t)
$$

DPLL (\oplus) algorithms and unsatisfiable formulas

Let us run some $\operatorname{DPLL}(\oplus)$ algorithm on

$$
(x \vee y) \wedge(\neg x \vee \neg y) \wedge(\neg y \vee t) \wedge(y \vee \neg t) \wedge(x \vee t) \wedge(\neg x \vee \neg t)
$$

Complexity of unsatisfiable formulas

Formula	DPLL	Res	DPLL (\oplus)
$F_{2^{-}}$-linear systems	hard	hard	easy [Itsykson and Sokolov 2014]
Perfect matching in $K_{2 n+1}$	$2^{\Theta(n \log n)}$	$2^{\Theta(n)}$	poly (n) [Itsykson and Sokolov 2014]
PHP $_{n+1}^{n}$	$2^{\Theta(n \log n)}$	$2^{\Theta(n)}$	$2^{\Theta(n)}$ [Itsykson and Sokolov 2014] [Oparin 2016]
$\mathrm{TS}_{G, c}^{\wedge}$	$2^{\Theta(n)}$	$2^{\Theta(n)}$	$2^{\Omega\left(n^{\epsilon}\right)}$ $[$ Itsykson and Sokolov 2014]
Random 3-CNF	$2^{\Theta(n)}$	$2^{\Theta(n)}$	$2^{\Theta(n)}$ [Garlik and Kolodziejczyk 2017]
Lifted Pebbling	$2^{\Omega(n / \log n)}$	$p o l y(n)$	$2^{\Omega(n / \log n)}$ [Itsykson and Sokolov 2017]

Complexity of satisfiable formulas

THEOREM

There exists an explicit family of satisfiable CNF formulas Ψ_{n} such that any drunken $\operatorname{DPLL}(\oplus)$ runs on Ψ_{n} at least $2^{\Omega(n)}$ steps with probability at least $1-2^{-\Omega(n)}$.

Complexity of satisfiable formulas

THEOREM

There exists an explicit family of satisfiable CNF formulas Ψ_{n} such that any drunken DPLL runs on Ψ_{n} at least $2^{\Omega(n)}$ steps with probability at least $1-2^{-\Omega(n)}$.

Complexity of satisfiable formulas

THEOREM

There exists an explicit family of satisfiable CNF formulas Ψ_{n} such that any drunken DPLL runs on Ψ_{n} at least $2^{\Omega(n)}$ steps with probability at least $1-2^{-\Omega(n)}$.

PLAN OF THE PROOF

- Ψ_{n} is PHP_{n+1}^{n} plus one satisfying assignment;
- Prove that w.h.p. a drunken DPLL will make an incorrect substitution;
- Adopt the lower bound technique for PHP_{n+1}^{n}.

The Prover-delayer Game

Let $\varphi\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a CNF formula; Prover and Delayer are playing the following game.

- Prover asks for the value of x_{i} for some $i \in[n]$;
- Delayer gives an answer from $\{0,1\}$ or "Choose any"; In the case of "Choose any" Prover chooses the value from $\{0,1\}$
- Delayer earns 1 coin for every answer "Choose any";
- The game ends if the current substitution contradicts some clause of φ.

The Prover-delayer Game

Let $\varphi\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a CNF formula; Prover and Delayer are playing the following game.

- Prover asks for the value of x_{i} for some $i \in[n]$;
- Delayer gives an answer from $\{0,1\}$ or "Choose any"; In the case of "Choose any" Prover chooses the value from $\{0,1\}$
- Delayer earns 1 coin for every answer "Choose any";
- The game ends if the current substitution contradicts some clause of φ.

THEOREM (CF. PUDLAK AND IMPAGLIAZZO, 2001)

If there is a strategy for Delayer such that for every Prover's strategy, Delayer earns at least t coins, then the size of any decision tree for φ is at least 2^{t}.

The Pigeonhole Principle

Let us recall the definition of the pigeonhole principle formula (PHP_{n+1}^{n}).

The Pigeonhole Principle

Let us recall the definition of the pigeonhole principle formula (PHP_{n+1}^{n}). The formula states that it is impossible to put $n+1$ pigeons into n holes.

- The formulas has $n(n+1)$ variables $\mathfrak{P}_{n}=\left\{p_{i, j}: \quad i \in[n+1], j \in[n]\right\}$ (informally, $p_{i, j}=1$ iff the ith pigeon is in the j th hole).

The Pigeonhole Principle

Let us recall the definition of the pigeonhole principle formula (PHP_{n+1}^{n}). The formula states that it is impossible to put $n+1$ pigeons into n holes.

- The formulas has $n(n+1)$ variables $\mathfrak{P}_{n}=\left\{p_{i, j}: \quad i \in[n+1], j \in[n]\right\}$ (informally, $p_{i, j}=1$ iff the ith pigeon is in the j th hole).
- Long clauses: $p_{i, 1} \vee p_{i, 2} \cdots \vee p_{i, n}$ for all $i \in[n+1]$

The Pigeonhole Principle

Let us recall the definition of the pigeonhole principle formula (PHP_{n+1}^{n}). The formula states that it is impossible to put $n+1$ pigeons into n holes.

- The formulas has $n(n+1)$ variables
$\mathfrak{P}_{n}=\left\{p_{i, j}: \quad i \in[n+1], j \in[n]\right\}$ (informally, $p_{i, j}=1$ iff the ith pigeon is in the j th hole).
- Long clauses: $p_{i, 1} \vee p_{i, 2} \cdots \vee p_{i, n}$ for all $i \in[n+1]$
- Short clauses: $\neg p_{i, k} \vee \neg p_{j, k}$ for all $i \neq j \in[n+1]$ and $k \in[n]$.

The Pigeonhole Principle

Let us recall the definition of the pigeonhole principle formula (PHP_{n+1}^{n}). The formula states that it is impossible to put $n+1$ pigeons into n holes.

- The formulas has $n(n+1)$ variables $\mathfrak{P}_{n}=\left\{p_{i, j}: \quad i \in[n+1], j \in[n]\right\}$ (informally, $p_{i, j}=1$ iff the ith pigeon is in the j th hole).
- Long clauses: $p_{i, 1} \vee p_{i, 2} \cdots \vee p_{i, n}$ for all $i \in[n+1]$
- Short clauses: $\neg p_{i, k} \vee \neg p_{j, k}$ for all $i \neq j \in[n+1]$ and $k \in[n]$.
- We say that a substitution π is proper if it satisfies all the short clauses.
- π properly implies ρ if any proper assignment that satisfy π also satisfies ρ;
- A proper rank of a substitution is the minimal number of equalities that properly imply all the other equalities.

A Lower Bound on Unsatisfiable Instances

LEMMA

Let a substitution π to the variables \mathfrak{P}_{n} has a proper rank at most $n-1$ and can be extended to a proper substitution. Then for all $i \in[n+1]$ there is a proper solution that satisfies $p_{i, 1} \vee p_{i, 2} \vee \cdots \vee p_{i, n}$.

A Lower Bound on Unsatisfiable Instances

LEMMA

Let a substitution π to the variables \mathfrak{P}_{n} has a proper rank at most $n-1$ and can be extended to a proper substitution. Then for all $i \in[n+1]$ there is a proper solution that satisfies $p_{i, 1} \vee p_{i, 2} \vee \cdots \vee p_{i, n}$.

THEOREM

If a substitution π to the variables \mathfrak{P}_{n} has a proper rank at most $\frac{n-1}{2}$ and can be extended to a proper substitution, then any decision tree for $\operatorname{PHP}_{n+1}^{n} \wedge \pi$ has size at least $2^{\frac{n-1}{2}}$

A Lower Bound on Unsatisfiable Instances

LEMMA

Let a substitution π to the variables \mathfrak{P}_{n} has a proper rank at most $n-1$ and can be extended to a proper substitution. Then for all $i \in[n+1]$ there is a proper solution that satisfies $p_{i, 1} \vee p_{i, 2} \vee \cdots \vee p_{i, n}$.

THEOREM

If a substitution π to the variables \mathfrak{P}_{n} has a proper rank at most $\frac{n-1}{2}$ and can be extended to a proper substitution, then any decision tree for $\operatorname{PHP}_{n+1}^{n} \wedge \pi$ has size at least $2^{\frac{n-1}{2}}$

PROOF.

Strategy of Delayer is the following: if the value of x_{i} is properly implied from the current substitution, then return it, otherwise, return "Choose any".

A Lower Bound on Unsatisfiable Instances

LEMMA

Let a substitution π to the variables \mathfrak{P}_{n} has a proper rank at most $n-1$ and can be extended to a proper substitution. Then for all $i \in[n+1]$ there is a proper solution that satisfies $p_{i, 1} \vee p_{i, 2} \vee \cdots \vee p_{i, n}$.

THEOREM

If a substitution π to the variables \mathfrak{P}_{n} has a proper rank at most $\frac{n-1}{2}$ and can be extended to a proper substitution, then any decision tree for $\operatorname{PHP}_{n+1}^{n} \wedge \pi$ has size at least $2^{\frac{n-1}{2}}$

PROOF.

Strategy of Delayer is the following: if the value of x_{i} is properly implied from the current substitution, then return it, otherwise, return "Choose any". "Choose any" may increase the proper rank by at most 1 . When the game ends the current substitution contradicts to all the long clauses.

A Lower Bound on Unsatisfiable Instances

LEMMA

Let a substitution π to the variables \mathfrak{P}_{n} has a proper rank at most $n-1$ and can be extended to a proper substitution. Then for all $i \in[n+1]$ there is a proper solution that satisfies $p_{i, 1} \vee p_{i, 2} \vee \cdots \vee p_{i, n}$.

THEOREM

If a substitution π to the variables \mathfrak{P}_{n} has a proper rank at most $\frac{n-1}{2}$ and can be extended to a proper substitution, then any decision tree for $\operatorname{PHP}_{n+1}^{n} \wedge \pi$ has size at least $2^{\frac{n-1}{2}}$

PROOF.

Strategy of Delayer is the following: if the value of x_{i} is properly implied from the current substitution, then return it, otherwise, return "Choose any". "Choose any" may increase the proper rank by at most 1 . When the game ends the current substitution contradicts to all the long clauses. Hence, Delayer earns at least $\frac{n-1}{2}$ coins.

Hard Satisfiable Formula

Let $\Phi=\bigwedge_{i \in I} C_{i}$ be a CNF formula on the variables x_{1}, \ldots, x_{n}.

Hard Satisfiable Formula

Let $\Phi=\bigwedge_{i \in I} C_{i}$ be a CNF formula on the variables x_{1}, \ldots, x_{n}.
$\Phi+\sigma=\bigwedge_{i \in I, j \in[n]} C_{i} \vee x_{j}^{\sigma\left(x_{j}\right)}$, where σ is an assignment, x^{0} denotes $\neg x$, and x^{1} denotes x.

Hard Satisfiable Formula

Let $\Phi=\bigwedge_{i \in I} C_{i}$ be a CNF formula on the variables x_{1}, \ldots, x_{n}.
$\Phi+\sigma=\bigwedge_{i \in I, j \in[n]} C_{i} \vee x_{j}^{\sigma\left(x_{j}\right)}$, where σ is an assignment, x^{0} denotes $\neg x$, and x^{1} denotes x.

LEMMA

If Φ is unsatisfiable, then σ is the only satisfying assignment of $\Phi+\sigma$.

Hard Satisfiable Formula

Let $\Phi=\bigwedge_{i \in I} C_{i}$ be a CNF formula on the variables x_{1}, \ldots, x_{n}.
$\Phi+\sigma=\bigwedge_{i \in l, j \in[n]} C_{i} \vee x_{j}^{\sigma\left(x_{j}\right)}$, where σ is an assignment, x^{0} denotes $\neg x$, and x^{1} denotes x.

LEMMA

If Φ is unsatisfiable, then σ is the only satisfying assignment of $\Phi+\sigma$.

THEOREM

If σ is a proper assignment, then $\mathrm{PHP}_{n+1}^{n}+\sigma$ is hard for drunken DPLL algorithms.

Hard Satisfiable Formula

THEOREM

If σ is a proper assignment, then $\mathrm{PHP}_{n+1}^{n}+\sigma$ is hard for drunken DPLL algorithms.

Hard Satisfiable Formula

THEOREM

If σ is a proper assignment, then $\mathrm{PHP}_{n+1}^{n}+\sigma$ is hard for drunken DPLL algorithms.

LEMMA

Let a substitution π to the variables \mathfrak{P}_{n} has a proper rank $k \leq n-1$ and can be extended to a proper substitution. Then there are at least two proper extensions of π.

Hard Satisfiable Formula

THEOREM

If σ is a proper assignment, then $\mathrm{PHP}_{n+1}^{n}+\sigma$ is hard for drunken DPLL algorithms.

LEMMA

Let a substitution π to the variables \mathfrak{P}_{n} has a proper rank $k \leq n-1$ and can be extended to a proper substitution. Then there are at least two proper extensions of π.

PROOF.

Consider the moment when the solution is found, the current substitution has proper rank at least $n-1$.

Hard Satisfiable Formula

THEOREM

If σ is a proper assignment, then $\mathrm{PHP}_{n+1}^{n}+\sigma$ is hard for drunken DPLL algorithms.

PROOF.

Consider the moment when the solution is found, the current substitution has proper rank at least $n-1$. Consider the moments on the acceptance branch when the proper rank grows $0 \rightarrow 1,1 \rightarrow 2, \ldots, \frac{n-1}{2}-1 \rightarrow \frac{n-1}{2}$.

Hard Satisfiable Formula

THEOREM

If σ is a proper assignment, then $\mathrm{PHP}_{n+1}^{n}+\sigma$ is hard for drunken DPLL algorithms.

PROOF.

Consider the moment when the solution is found, the current substitution has proper rank at least $n-1$. Consider the moments on the acceptance branch when the proper rank grows $0 \rightarrow 1,1 \rightarrow 2, \ldots, \frac{n-1}{2}-1 \rightarrow \frac{n-1}{2}$.
Note that the probability that the algorithm deviates from the acceptance path in one of these moments is $1-2^{-\frac{n-1}{2}}$.

Hard Satisfiable Formula

THEOREM

If σ is a proper assignment, then $\mathrm{PHP}_{n+1}^{n}+\sigma$ is hard for drunken DPLL algorithms.

PROOF.

Consider the moment when the solution is found, the current substitution has proper rank at least $n-1$. Consider the moments on the acceptance branch when the proper rank grows $0 \rightarrow 1,1 \rightarrow 2, \ldots, \frac{n-1}{2}-1 \rightarrow \frac{n-1}{2}$. Note that the probability that the algorithm deviates from the acceptance path in one of these moments is $1-2^{-\frac{n-1}{2}}$. After the deviation: $\left(\mathrm{PHP}_{n+1}^{n}+\sigma\right) \wedge \pi$ is unsatisfiable, π can be extended to a proper substitution and has a proper rank $\frac{n-1}{2}$.

Hard Satisfiable Formula

THEOREM

If σ is a proper assignment, then $\mathrm{PHP}_{n+1}^{n}+\sigma$ is hard for drunken DPLL algorithms.

PROOF.

Consider the moment when the solution is found, the current substitution has proper rank at least $n-1$. Consider the moments on the acceptance branch when the proper rank grows $0 \rightarrow 1,1 \rightarrow 2, \ldots, \frac{n-1}{2}-1 \rightarrow \frac{n-1}{2}$.
Note that the probability that the algorithm deviates from the acceptance path in one of these moments is $1-2^{-\frac{n-1}{2}}$. After the deviation: $\left(\mathrm{PHP}_{n+1}^{n}+\sigma\right) \wedge \pi$ is unsatisfiable, π can be extended to a proper substitution and has a proper rank $\frac{n-1}{2}$.
Decision tree for $\left(\mathrm{PHP}_{n+1}^{n}+\sigma\right) \wedge \pi$ also a Decision tree for $\operatorname{PHP}_{n+1}^{n} \wedge \pi$.

Hard Satisfiable Formula

THEOREM

If σ is a proper assignment, then $\mathrm{PHP}_{n+1}^{n}+\sigma$ is hard for drunken DPLL algorithms.

PROOF.

Consider the moment when the solution is found, the current substitution has proper rank at least $n-1$. Consider the moments on the acceptance branch when the proper rank grows $0 \rightarrow 1,1 \rightarrow 2, \ldots, \frac{n-1}{2}-1 \rightarrow \frac{n-1}{2}$.
Note that the probability that the algorithm deviates from the acceptance path in one of these moments is $1-2^{-\frac{n-1}{2}}$. After the deviation: $\left(\mathrm{PHP}_{n+1}^{n}+\sigma\right) \wedge \pi$ is unsatisfiable, π can be extended to a proper substitution and has a proper rank $\frac{n-1}{2}$.
Decision tree for $\left(\mathrm{PHP}_{n+1}^{n}+\sigma\right) \wedge \pi$ also a Decision tree for $\mathrm{PHP}_{n+1}^{n} \wedge \pi$. And hence it has size at least $2^{\frac{n-1}{2}}$.

Open Questions

(1) Good models of CDCL algorithms.

Open Questions

(1) Good models of CDCL algorithms.
(2) Lower bounds for $\operatorname{DPLL}(\oplus)$ algorithms for satisfiable $O(1)$-CNF formulas.

Open Questions

(1) Good models of CDCL algorithms.
(2) Lower bounds for $\operatorname{DPLL}(\oplus)$ algorithms for satisfiable $O(1)$-CNF formulas. Or even SETH lower bounds on $\mathrm{DPLL}(\oplus)$ algorithms.
(3) Lower bounds for myopic $\operatorname{DPLL}(\oplus)$ algorithms.

Open Questions

(1) Good models of CDCL algorithms.
(2) Lower bounds for $\operatorname{DPLL}(\oplus)$ algorithms for satisfiable $O(1)$-CNF formulas. Or even SETH lower bounds on $\operatorname{DPLL}(\oplus)$ algorithms.
(3) Lower bounds for myopic $\operatorname{DPLL}(\oplus)$ algorithms.
(4) Lower bounds for $\operatorname{Res}(\oplus)$, the resolution that operates with disjunctions of linear equations.

Open Questions

(1) Good models of CDCL algorithms.
(2) Lower bounds for $\operatorname{DPLL}(\oplus)$ algorithms for satisfiable $O(1)$-CNF formulas. Or even SETH lower bounds on $\operatorname{DPLL}(\oplus)$ algorithms.
(3) Lower bounds for myopic $\operatorname{DPLL}(\oplus)$ algorithms.
(4) Lower bounds for $\operatorname{Res}(\oplus)$, the resolution that operates with disjunctions of linear equations.
(5) $\operatorname{DPLL}(\oplus)$ or even $\operatorname{CDCL}(\oplus)$ solvers working well on the industrial instances.

