On the Limits of Gate Elimination

Authors:

Alexander Golovnev, Edward Hirsch, Alexander Knop, Alexander Kulikov

Institute:

St. Petersburg Department of V.A. Steklov Institute of Mathematics of the Russian Academy of Sciences

State of the art

SHANNON, 1949

Almost all functions of *n* variables have circuit size $\Omega(\frac{2^n}{n})$.

State of the art

SHANNON, 1949

Almost all functions of *n* variables have circuit size $\Omega(\frac{2^n}{n})$.

FIND, GOLOVNEV, HIRSCH, KULIKOV, 2016

There is a function $f \in \mathbf{P}$ such that $C(f) \ge 3.01n$.

Let \mathcal{F}_n be a set of functions f such that f(x) = 1 iff $\sum_{i=0}^n c_i x_i \equiv r \pmod{3}$ $(c_i \in \{1, 2\})$ and $\mu(f) = \texttt{gates} + \texttt{inputs}(f)$.

Let \mathcal{F}_n be a set of functions f such that f(x) = 1 iff $\sum_{i=0}^n c_i x_i \equiv r \pmod{3}$ $(c_i \in \{1, 2\})$ and $\mu(f) = \texttt{gates} + \texttt{inputs}(f)$.

INDUCTION STEP

For any function f and numbers $i, j \in [n]$

- there is $c \in \{0,1\}$ such that $\mu(f) \mu(f|_{x_i \leftarrow c}) \ge 3$ or
- 2 for each $c \in \{0,1\}$ holds $\mu(f) \mu(f|_{x_i \leftarrow x_j \oplus c}) \ge 3$.

Let \mathcal{F}_n be a set of functions f such that f(x) = 1 iff $\sum_{i=0}^n c_i x_i \equiv r \pmod{3}$ $(c_i \in \{1, 2\})$ and $\mu(f) = \texttt{gates} + \texttt{inputs}(f)$.

RIGIDITY

For any function $f \in \mathcal{F}_n$ and numbers $i, j \in [n]$

for any c holds $f|_{x_i \leftarrow c} \in \mathcal{F}_{n-1}$ or

2 there is *c* such that $f|_{x_i \leftarrow x_j \oplus c} \in \mathcal{F}_{n-1}$.

Let \mathcal{F}_n be a set of functions f such that f(x) = 1 iff $\sum_{i=0}^{n} c_i x_i \equiv r$ (mod 3) $(c_i \in \{1, 2\})$ and $\mu(f) = \texttt{gates} + \texttt{inputs}(f)$. As result we prove that for any $f \in \mathcal{F}_n$ holds $\mu(f) \geq 3n - 6$. Hence $\texttt{gates}(f) \geq 2n - 6$.

Definition of gate elimination

(1) (Measure usefulness.) If $\mu(f)$ is large, then gates(f) is large.

Definition of gate elimination

(Measure usefulness.) If μ(f) is large, then gates(f) is large.
(Invariance.) For every f∈ F and ρ∈ S, either f|_ρ ∈ F or stop(f|_ρ).

Definition of gate elimination

- 1 (Measure usefulness.) If $\mu(f)$ is large, then gates(f) is large.
- (Invariance.) For every f∈ F and ρ∈ S, either f|_ρ ∈ F or stop(f|_ρ).
- (Induction step.) For every f with inputs(f) = n, there is a substitution $\rho \in S$ such that $\mu(f|_{\rho}) \leq \mu(f) \text{gain}(n)$. (In known proofs, gain(n) is constant.)

Definition

COMPOSITION

For any functions $f: \{0,1\}^n \to \{0,1\}$ and $g: \{0,1\}^k \to \{0,1\}$ we call a function $f \diamond g$ composition of f and g if $f \diamond g: \{0,1\}^{nk} \to \{0,1\}$ and $f \diamond g(x_{1,1},\ldots,x_{n,k}) = f(g(x_{1,1},\ldots,x_{1,k}),\ldots,g(x_{n,1},\ldots,x_{n,k}))$

Definition

COMPOSITION

For any functions $f: \{0,1\}^n \to \{0,1\}$ and $g: \{0,1\}^k \to \{0,1\}$ we call a function $f \diamond g$ composition of f and g if $f \diamond g: \{0,1\}^{nk} \to \{0,1\}$ and $f \diamond g(x_{1,1},\ldots,x_{n,k}) = f(g(x_{1,1},\ldots,x_{1,k}),\ldots,g(x_{n,1},\ldots,x_{n,k}))$

SUBADDITIVE MEASURE

We call measure μ on boolean functions subadditive if for any functions $f: \{0,1\}^n \to \{0,1\}$ and $g: \{0,1\}^k \to \{0,1\}$ holds $\mu(f) + \mu(g) \ge \mu(f \diamond g)$.

Subadditive measures

LIMITATION

If μ is a subadditive measure then there is a famyly of functions f_n and a constant $c \ge 0$ such that for any *m*-substitution ρ holds $\mu(f_n) - \mu(f_n|_{\rho}) \le c$ and gates $(f) = 2^{\Omega(n)}$.

Further directions

 Show that many interesting functions are resistant to gate elimination.

Further directions

- Show that many interesting functions are resistant to gate elimination.
- 2 Extend the result to local complexity measures or another wide class.