Complexity of distributions and average-case hardness

Authors:

Dmitry Itsykson, Alexander Knop, Dmitry Sokolov

Institute:

St. Petersburg Department of V.A. Steklov Institute of Mathematics of the Russian Academy of Sciences

What computer scientists want

SAT IS EASY (P = NP)

There is a plynomial-time algorithm such that for all Boolean formulas it decides correctly if they are satisfiable or not.

What computer scientists want

SAT IS EASY (P = NP)

There is a plynomial-time algorithm such that for all Boolean formulas it decides correctly if they are satisfiable or not.

SAT IS HARD ($P \neq NP$)

For any plynomial-time algorithm, there is a Boolean formula such that this algorithm decides if it is satisfiable or not incorrectly.

What computer scientists really want

SAT IS EASY

There is a plynomial-time algorithm such that for almost all Boolean formulas it decides correctly if they are satisfiable or not.

What computer scientists really want

SAT IS EASY

There is a plynomial-time algorithm such that for almost all Boolean formulas it decides correctly if they are satisfiable or not.

SAT IS HARD

For any plynomial-time algorithm there are many Boolean formulas such that this algorithm decides if they are satisfiable or not incorrectly.

What distribution?

SAT IS EASY

There is a plynomial-time algorithm such that for almost all Boolean formulas it decides correctly if they are satisfiable or not.

SAT IS HARD

For any plynomial-time algorithm there are many formulas such that this algorithm decides if they are satisfiable or not incorrectly.

What distribution?

SAT IS EASY

There is a plynomial-time algorithm such that for almost all Boolean formulas it decides correctly if they are satisfiable or not.

SAT IS HARD

For any plynomial-time algorithm there are many formulas such that this algorithm decides if they are satisfiable or not incorrectly.

LI AND VITANYI, 1992

There is a distribution on strings such that for any language L, if $1 - \frac{1}{n^3}$ fraction of L is decidable in polynomial time, then L is decidable in polynomial time.

Natural classes of distributions

SAMPLABLE DISTRIBUTIONS

An ensamble of distributions D is samplable in time f(n) iff there is a f(n)-time algorithm such that for any n distributions D_n and $A(1^n)$ are equally distributed.

Natural classes of distributions

SAMPLABLE DISTRIBUTIONS

An ensamble of distributions D is samplable in time f(n) iff there is a f(n)-time algorithm such that for any n distributions D_n and $A(1^n)$ are equally distributed.

COMPUTABLE DISTRIBUTIONS

An ensamble of distributions D is samplable in time f(n) iff there is a f(n)-time algorithm such that for any n, function $x \to A(1^n, x)$ is a cumulative distribution function of D_n .

Classes of computations

HEURISTICALLY DECIDABLE IN POLYNOMIAL TIME

Let *L* is a language and *D* is an ensemble of distributions. We call distributional problem (L, D) heuristically decidable in polynomial time with error $\epsilon(n)$ $((L, D) \in \text{Heur}_{\epsilon(n)}\mathbf{P})$ iff there is a polynomial time algorithm *A* such that $\Pr_{x \leftarrow D_n}[A(x) \neq L(x)] \leq \epsilon(n)$.

Complexity of distribution

FOLKLORE

For any k > 0 and δ there is a language L such that $(L, U) \in \text{Heur}_{\delta}\mathbf{P}$ and for any R holds $(L, R) \notin \text{Heur}_{1-\delta}\mathbf{DTime}(n^k)$.

Complexity of distribution

FOLKLORE

For any k > 0 and δ there is a language L such that $(L, U) \in \text{Heur}_{\delta}\mathbf{P}$ and for any R holds $(L, R) \notin \text{Heur}_{1-\delta}\mathbf{DTime}(n^k)$.

ITSYKSON, K, AND SOKOLOV, 2015

For any k > 0 and δ there is a language L such that $(L, U) \in \text{Heur}_{\delta} \text{BPP}$ and for any $R \in \text{DSamp}(n^k)$ holds $(L, R) \notin \text{Heur}_{\frac{1}{2}-\delta} \text{BPTime}(n^k)$.

Complexity of distribution

FOLKLORE

For any k > 0 and δ there is a language L such that $(L, U) \in \text{Heur}_{\delta}\mathbf{P}$ and for any R holds $(L, R) \notin \text{Heur}_{1-\delta}\mathbf{DTime}(n^k)$.

ITSYKSON, K, AND SOKOLOV, 2015

For any k > 0 and δ there is a language L such that $(L, U) \in \text{Heur}_{\delta} \text{BPP}$ and for any $R \in \text{DSamp}(n^k)$ holds $(L, R) \notin \text{Heur}_{\frac{1}{2}-\delta} \text{BPTime}(n^k)$.

DUAL QUESTION?

Is there a distribution $D \in \mathbf{PSamp}$ and a language L such that $(L, D) \notin \operatorname{Heur}_{1-\delta} \mathbf{P}$ and for any $R \in \mathbf{DSamp}(n^k)$ holds $(L, R) \in \operatorname{Heur}_{\delta} \mathbf{P}$.

Known results

DUAL QUESTION?

Is there a distribution $D \in \mathbf{PSamp}$ and a language L such that $(L, D) \notin \operatorname{Heur}_{1-\delta} \mathbf{P}$ and for any $R \in \mathbf{DSamp}(n^k)$ holds $(L, R) \in \operatorname{Heur}_{\delta} \mathbf{P}$.

Known results

DUAL QUESTION?

Is there a distribution $D \in \mathbf{PSamp}$ and a language L such that $(L, D) \notin \operatorname{Heur}_{1-\delta} \mathbf{P}$ and for any $R \in \mathbf{DSamp}(n^k)$ holds $(L, R) \in \operatorname{Heur}_{\delta} \mathbf{P}$.

GUREVICH AND SHELAH, 1987

Let HP denote the language of Hamiltonian graphs. Then $(HP, U) \in \text{Heur}_{\frac{1}{2^{O(\sqrt{n})}}} \mathbf{DTime}(n).$

Known results

DUAL QUESTION?

Is there a distribution $D \in \mathbf{PSamp}$ and a language L such that $(L, D) \notin \operatorname{Heur}_{1-\delta} \mathbf{P}$ and for any $R \in \mathbf{DSamp}(n^k)$ holds $(L, R) \in \operatorname{Heur}_{\delta} \mathbf{P}$.

GUREVICH AND SHELAH, 1987

Let HP denote the language of Hamiltonian graphs. Then $(HP, U) \in Heur_{\frac{1}{2^{O(\sqrt{n})}}} \mathbf{DTime}(n).$

BABAI, ERDOS, AND SELKOW, 1980

Let GI denote the language of pairs of isomorphic graphs. Then $(GI, U) \in \text{Heur}_{\frac{1}{\sqrt{n}}} \mathbf{DTime}(n).$

Equal quesition

STATISTICAL DISTANCE

A statistical distance between D_n and R_n is $\Delta(D_n, R_n) = \max_{S \subseteq \{0,1\}^n} |D_n(S) - R_n(S)|.$

Equal quesition

STATISTICAL DISTANCE

A statistical distance between D_n and R_n is $\Delta(D_n, R_n) = \max_{S \subseteq \{0,1\}^n} |D_n(S) - R_n(S)|.$

EQUIVALENT RESTATEMENT

For any k the following two statements are equal:

- ▶ There is a function $\delta(n) \to 0$, a distribution $D \in \mathbf{PSamp}$, and a language L such that $(L, D) \notin \operatorname{Heur}_{1-\delta} \mathbf{P}$ and $(L, R) \in \operatorname{Heur}_{\delta} \mathbf{P}$ for any $R \in \mathbf{DSamp}(n^k)$.
- ▶ There is a function $\delta(n) \to 0$, a distribution $D \in \mathbf{PSamp}$ such that for any $R \in \mathbf{DSamp}(n^k)$ the statistical distance between R and D is at least $1 \delta(n)$.

Hierarchies for distributions

WATSON, 2013

For any constant k and $\epsilon > 0$ there is a distribution $D \in \mathbf{PSamp}$ such that $\Delta(D, R) \ge 1 - \frac{1}{k} + \epsilon$ for any $R \in \mathbf{DSamp}(n^k)$.

Hierarchies for distributions

WATSON, 2013

For any constant k and $\epsilon > 0$ there is a distribution $D \in \mathbf{PSamp}$ such that $\Delta(D, R) \ge 1 - \frac{1}{k} + \epsilon$ for any $R \in \mathbf{DSamp}(n^k)$.

ITSYKSON, K, SOKOLOV, 2016

For any constant c and $\epsilon > 0$ there is a distribution $D \in \mathbf{DSamp}(n^{\log^{c}(n)})$ such that $\Delta(D, R) \ge 1 - \lambda(n)$ for any $R \in \mathbf{PSamp}$ where $\lambda(n) \to 0$.

Hierarchies for distributions

ITSYKSON, K, SOKOLOV, 2016

For any constant c and $\epsilon > 0$ there is a distribution $D \in \mathbf{DSamp}(n^{\log^{c}(n)})$ such that $\Delta(D, R) \ge 1 - \lambda(n)$ for any $R \in \mathbf{PSamp}$ where $\lambda(n) \to 0$.

ITSYKSON, K, SOKOLOV, 2016

There is a function $\delta(n) \to 0$, a distribution $D \in \mathbf{DSamp}(n^{\log^{c}(n)})$, and a language L such that $(L, D) \notin \operatorname{Heur}_{1-\delta} \mathbf{P}$ and $(L, R) \in \operatorname{Heur}_{1-\delta} \mathbf{P}$ for any $R \in \mathbf{PSamp}$.

Weak hardness

OPEN QUESTION

Is there a distribution $D \in \mathbf{PSamp}$ and a language L such that $(L, D) \notin \operatorname{Heur}_{1-\delta} \mathbf{P}$ and $(L, R) \in \operatorname{Heur}_{\delta} \mathbf{P}$ for any $R \in \mathbf{DSamp}(n^k)$?

Weak hardness

OPEN QUESTION

Is there a distribution $D \in \mathbf{PSamp}$ and a language L such that $(L, D) \notin \operatorname{Heur}_{1-\delta} \mathbf{P}$ and $(L, R) \in \operatorname{Heur}_{\delta} \mathbf{P}$ for any $R \in \mathbf{DSamp}(n^k)$?

ITSYKSON, K, SOKOLOV, 2016

For all *a* and *b* there is a distribution $D \in \mathbf{PSamp}$ and a language *L* such that $(L, D) \notin \operatorname{Heur}_{\frac{1}{n^3}} \mathbf{P}$ and for any $R \in \mathbf{DSamp}(n^b)$ there is a constant c > 0 such that $(L, R) \in \operatorname{Heur}_{\frac{c}{n^3}} \mathbf{P}$.

Computable distributions

ITSYKSON, K, SOKOLOV, 2016

For all *a* there is a distribution $D \in \mathbf{PComp}$ and a language *L* such that $(L, D) \notin \operatorname{Heur}_{1-\frac{1}{2^{n-1}}} \mathbf{P}(L, R) \in \operatorname{Heur}_{O(\frac{1}{2^n})} \mathbf{P}$ for any $R \in \mathbf{DComp}(n^k)$ holds.

Summary

1 For all *a* there is a distribution $D \in \mathbf{DSamp}(n^{\log^a(n)})$, a language *L*, and a monotone function $\lambda(n)$ such that $(L, D) \notin \operatorname{Heur}_{1-\lambda(n)}\mathbf{P}$, $(L, R) \in \operatorname{Heur}_{\lambda(n)}\mathbf{P}$ for any $R \in \mathbf{PSamp}$, and $\lambda(n) \to 0$.

Summary

- (1) For all *a* there is a distribution $D \in \mathbf{DSamp}(n^{\log^a(n)})$, a language *L*, and a monotone function $\lambda(n)$ such that $(L, D) \notin \operatorname{Heur}_{1-\lambda(n)}\mathbf{P}$, $(L, R) \in \operatorname{Heur}_{\lambda(n)}\mathbf{P}$ for any $R \in \mathbf{PSamp}$, and $\lambda(n) \to 0$.
- 2 For all *a* and *b* there is a distribution $D \in \mathbf{PSamp}$ and a language *L* such that $(L, D) \notin \operatorname{Heur}_{\frac{1}{n^a}} \mathbf{P}$ and for any $R \in \mathbf{DSamp}(n^b)$ there is a constant c > 0 such that $(L, R) \in \operatorname{Heur}_{\frac{c}{n^a}} \mathbf{P}$.

Summary

- 1 For all *a* there is a distribution $D \in \mathbf{DSamp}(n^{\log^a(n)})$, a language *L*, and a monotone function $\lambda(n)$ such that $(L, D) \notin \operatorname{Heur}_{1-\lambda(n)} \mathbf{P}$, $(L, R) \in \operatorname{Heur}_{\lambda(n)} \mathbf{P}$ for any $R \in \mathbf{PSamp}$, and $\lambda(n) \to 0$.
- 2 For all *a* and *b* there is a distribution $D \in \mathbf{PSamp}$ and a language *L* such that $(L, D) \notin \operatorname{Heur}_{\frac{1}{n^3}} \mathbf{P}$ and for any $R \in \mathbf{DSamp}(n^b)$ there is a constant c > 0 such that $(L, R) \in \operatorname{Heur}_{\frac{c}{n^3}} \mathbf{P}$.
- (3) For all a there is a distribution D ∈ PComp and a language L such that (L, D) ∉ Heur_{1-1/2ⁿ⁻¹} P and for any R ∈ DComp(n^a) there is a constant c > 0 such that (L, R) ∈ Heur_{con} P.